A combined kernel-PCA with clustering analysis for bridge damage detection under changing environmental conditions

Author(s):  
R.M. Delgadillo ◽  
J.R. Casas
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 824
Author(s):  
Wenting Qiao ◽  
Biao Ma ◽  
Qiangwei Liu ◽  
Xiaoguang Wu ◽  
Gang Li

Cracks and exposed steel bars are the main factors that affect the service life of bridges. It is necessary to detect the surface damage during regular bridge inspections. Due to the complex structure of bridges, automatically detecting bridge damage is a challenging task. In the field of crack classification and segmentation, convolutional neural networks have offer advantages, but ordinary networks cannot completely solve the environmental impact problems in reality. To further overcome these problems, in this paper a new algorithm to detect surface damage called EMA-DenseNet is proposed. The main contribution of this article is to redesign the structure of the densely connected convolutional networks (DenseNet) and add the expected maximum attention (EMA) module after the last pooling layer. The EMA module is obviously helpful to the bridge damage feature extraction. Besides, we use a new loss function which considers the connectivity of pixels, it has been proved to be effective in reducing the break point of fracture prediction and improving the accuracy. To train and test the model, we captured many images from multiple bridges located in Zhejiang (China), and then built a dataset of bridge damage images. First, experiments were carried out on an open concrete crack dataset. The mean pixel accuracy (MPA), mean intersection over union (MIoU), precision and frames per second (FPS) of the EMA-DenseNet are 87.42%, 92.59%, 81.97% and 25.4, respectively. Then we also conducted experiments on a more challenging bridge damage dataset, the MIoU, where MPA, precision and FPS were 79.87%, 86.35%, 74.70% and 14.6, respectively. Compared with the current state-of-the-art algorithms, the proposed algorithm is more accurate and robust in bridge damage detection.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


2013 ◽  
Vol 18 (11) ◽  
pp. 1227-1238 ◽  
Author(s):  
Brent Phares ◽  
Ping Lu ◽  
Terry Wipf ◽  
Lowell Greimann ◽  
Junwon Seo

2021 ◽  
Author(s):  
Sheng Li ◽  
Yan Yang ◽  
Lina Yue ◽  
Wenbin Hu ◽  
Fang Liu ◽  
...  

Author(s):  
Andreas Kyprianou ◽  
Andreas Tjirkallis

An important task in structural health monitoring (SHM) is that of damage detection under varying environmental and operational conditions. Structures, under varying environmental conditions, change their mass, elasticity and damping properties whereas changing operational conditions cause changes to excitations. A damage detection methodology implemented in these circumstances faces serious challenges since changes to structural behaviour imparted by environmental or operational conditions could be wrongly attributed to damage. The part of a damage detection decision algorithm that removes environmental and operational effects is called normalization. In this chapter a normalization methodology that is based on the similarity between continuous wavelet transform maxima decay lines is presented. This methodology is implemented on both simulated and experimental data. Simulated data were obtained from a three degree of freedom system. Varying environmental conditions were simulated by temperature dependent stiffness parameters and operating conditions by changing the colour of random excitation. Experimental data were obtained from damaged cantilever beams that were subjected to random excitations of different colour and varying temperatures.


2020 ◽  
Vol 135 ◽  
pp. 106380 ◽  
Author(s):  
F. Huseynov ◽  
C. Kim ◽  
E.J. OBrien ◽  
J.M.W. Brownjohn ◽  
D. Hester ◽  
...  

2001 ◽  
Vol 4 (2) ◽  
pp. 75-91 ◽  
Author(s):  
Xiaotong Wang ◽  
Chih-Chen Chang ◽  
Lichu Fan

The recent advances in detecting and locating damage in bridges by different kinds of non-destructive testing and evaluation (NDT&E) methods are reviewed. From the application point of view, classifications for general bridge components and their damage types are presented. The relationships between damage, bridge components, and NDT&E techniques are summarized. Many useful WEB sources of NDT&E techniques in bridge damage detection are given. It is concluded that: (1) vibration-based damage detection methods are successful to a certain extent, especially when the overall damage is significant and, low frequency vibration can identify those areas where more detailed local inspection should be concentrated; (2) robust identification techniques that are able to locate damage based on realistic measured data sets still seem a long way from reality, and, basic research is still necessary in the mean time; (3) the rapid development of computer technology and digital signal processing (DSP) techniques greatly impacts upon the conventional NDT techniques, especially in control data processing and data displaying, as well as in simulation and modeling; (4) most of the NDT&E techniques introduced in this paper have their own practical commercial systems, but the effort required for combining the theoretical, experimental and engineering achievements, is still a challenging task when establishing the relationship between the unknown quantities and the measured signal parameters and specialised instruments have shown great advantages for doing some things more effectively than general ones; (5) in bridge damage detection, a problem usually requires the application of different NDT&E techniques; two or more independent techniques are needed to enable confidence in the results.


Sign in / Sign up

Export Citation Format

Share Document