Radial Tire Compound Polymer Blends

2020 ◽  
pp. 151-180
Author(s):  
Brendan Rodgers
Keyword(s):  
1974 ◽  
Vol 47 (1) ◽  
pp. 48-56 ◽  
Author(s):  
A. K. Sircar ◽  
T. G. Lamond ◽  
P. E. Pinter

Abstract The results of this work support earlier findings regarding the transfer of carbon black in blends of BR with SBR, NR, and CIIR. Compared to conventionally-mixed compounds, in most cases vulcanizates with a heterogeneous carbon black distribution have superior hysteresis properties, presumably due to the presence of the unloaded layer mitigating the generally observed deleterious effects of carbon black upon these properties. The effect of unloaded SBR or BR layers on stress-strain values is quite small in SBR/BR blends where the zone size of the elastomer phases is small, but significant in SBR/NR and BR/NR where the zone size of the elastomer phases is larger. Superior cut growth resistance is seen for NR/BR and SBR/BR blends containing unloaded BR. The properties of SBR/BR and NR/BR blends in which most of the black is in the BR phase suggest that they may find utility in applications where superior hysteresis properties are required; e.g., in radial-tire sidewalls. Compounds with a heterogeneous carbon black distribution may also find utility in wire and cable applications, due to their superior insulating properties.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Author(s):  
William A. Heeschen

Two new morphological measurements based on digital image analysis, CoContinuity and CoContinuity Balance, have been developed and implemented for quantitative measurement of morphology in polymer blends. The morphology of polymer blends varies with phase ratio, composition and processing. A typical morphological evolution for increasing phase ratio of polymer A to polymer B starts with discrete domains of A in a matrix of B (A/B < 1), moves through a cocontinuous distribution of A and B (A/B ≈ 1) and finishes with discrete domains of B in a matrix of A (A/B > 1). For low phase ratios, A is often seen as solid convex particles embedded in the continuous B phase. As the ratio increases, A domains begin to evolve into irregular shapes, though still recognizable as separate domains. Further increase in the phase ratio leads to A domains which extend into and surround the B phase while the B phase simultaneously extends into and surrounds the A phase.


Polymer News ◽  
2005 ◽  
Vol 30 (9) ◽  
pp. 296-300
Author(s):  
F. Esposito ◽  
V. Casuscelli ◽  
M. V. Volpe ◽  
G. Carotenuto ◽  
L. Nicolais

1990 ◽  
Vol 51 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Zhen-Gang Wang ◽  
S.A. Safran

1989 ◽  
Vol 50 (3) ◽  
pp. 245-253 ◽  
Author(s):  
M.G. Brereton ◽  
T.A. Vilgis
Keyword(s):  

1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


1988 ◽  
Vol 16 (4) ◽  
pp. 200-207
Author(s):  
O. B. Tretyakov

Abstract A process is suggested for improving the rubber-cord composite in a radial tire through precision stage-by-stage molding of its parts. This starts by casting an inner elastomeric envelope of the carcass from a liquid oligomer mix. The full molding technology uses acoustic and resonance effects to optimize the degree of order of the structure and of rubber uniformity. The resultant precision tires should have a higher degree of order of both macro- and microstructure than do present commercial tires. Reduced stress concentration in locations that have high failure rates in commercial tires are considered. A new theory, CSSOT, is used for optimizing tires from results of stress-strain cycles.


1987 ◽  
Vol 15 (1) ◽  
pp. 3-29 ◽  
Author(s):  
K. Yamagishi ◽  
M. Togashi ◽  
S. Furuya ◽  
K. Tsukahara ◽  
N. Yoshimura

Abstract The Rolling Contour Optimization Theory (RCOT) can lead to improved steering, fuel efficiency, riding comfort, and braking performance of tires relative to those of conventional shape. The conventional shape has been guided by natural equilibrium profiles, while the RCOT technology shape is guided by that of the tire in motion. This reduces useless distortions caused by running the tire under load. The RCOT design focuses on the distribution of belt and sidewall tension in the tire. Controlling tension in the belt and carcass area while the tire is in motion was the key to creating this new tire shape.


Sign in / Sign up

Export Citation Format

Share Document