Design of Horizontal Alignment

2021 ◽  
pp. 97-109
Author(s):  
Sandipan Goswami ◽  
Pradip Sarkar
Keyword(s):  
2003 ◽  
Vol 30 (6) ◽  
pp. 1042-1054 ◽  
Author(s):  
Yasser Hassan

Many models have been developed to evaluate the operating speeds on two-lane rural highways. However, provided information usually lacks details essential to assess their applicability at locations other than where they were developed. This paper presents a procedure to interpret raw data collected on three horizontal curve sites of different two-lane rural highway classes in Ontario. The speed observations were categorized into three vehicle classes (passenger car, light truck, and multi-axle heavy truck) and four light condition categories (day, night, and two transition periods). The minimum headway and percentile value to define the operating speed were examined, and a revision of the current practice deemed not warranted. The findings also indicated that operating speeds do not depend on the time or vehicle class. Finally, the horizontal alignment affects the operating speed, but the speeds of the two travel directions on a horizontal curve may differ even with little contribution of the vertical alignment.Key words: highway geometric design, operating speed, traffic composition, traffic counters, ambient light, acceleration, deceleration.


Author(s):  
Bekir Bartin ◽  
Sami Demiroluk ◽  
Kaan Ozbay ◽  
Mojibulrahman Jami

This paper introduces CurvS, a web-based tool for researchers and analysts that automatically extracts, visualizes, and analyzes roadway horizontal alignment information using readily available geographic information system roadway centerline data. The functionalities of CurvS are presented along with a brief background on its methodology. The validation of its estimation results are presented using actual horizontal alignment data from two different roadway types: Route 83, a two-lane two-way rural roadway in New Jersey and I-80, a freeway segment in Nevada. Different metrics are used for validation. These are identification rates of curved and tangent sections, overlap ratio of curved and tangent sections between estimated and actual horizontal alignment data, and percent fit of curve radii. The validation results show that CurvS is able to identify all the curves on these two roadways, and the estimated section lengths are significantly close to the actual alignment data, especially for the I-80 freeway segment, where 90% of curved length and 94% of tangent section length are correctly matched. Even when curves have small central angles, such as the ones in Route 83, CurvS’s estimations covers 71% of curved length and 96% of tangent section length.


2014 ◽  
Vol 21 (8) ◽  
pp. 3411-3418 ◽  
Author(s):  
Liu Yang ◽  
Jian-long Zheng ◽  
Rui Zhang
Keyword(s):  

2016 ◽  
pp. 1679-1689
Author(s):  
Zhen Yang ◽  
Haifeng Han ◽  
Ziyi Xiong ◽  
Donglin Lei

2021 ◽  
Vol 16 ◽  
pp. 610-625
Author(s):  
Panagiotis Lemonakis

Most of the road design guidelines assume that the vehicles traverse a trajectory that coincides with the midline of the traffic lane. Based on this assumption the thresholds of various features are determined such as the maximum permissible side friction factor. It is therefore important to investigate the extent to which the trajectory of the vehicles is similar to the horizontal alignment of the road or substantial differences exist. To this end, a naturalistic riding study was designed and executed with the use of an instrumented motorcycle which measured the position of the motorcycle with great accuracy in a rural 2-lane road segment. The derived trajectories were then plotted against the horizontal alignment of the road and compared with the 3 consecutive elements which form a typical horizontal curve i.e., the entering spiral curve, the circular curve, and the exiting spiral curve. Linear equations were developed which correlate the traveled curvatures with the distance of each horizontal curve along the road segment under investigation. The process of the data revealed that the riders differ their trajectory compared to the alignment of the road. However, in small radius horizontal curves is more likely to observe curvatures that are similar to the geometric one. Moreover, the riders perform more abrupt maneuvres in the first part of the horizontal curves while they straighten the handlebars of the motorcycle before the end of the curve. The present paper aims to shed light on the behavior of motorcycle riders on horizontal curves and hence to contribute to the reduction of motorcycle accidents, particularly the single-vehicle ones.


Author(s):  
Jorge Zurita-Hernandez ◽  
Raul Ayuso-Montero ◽  
Meritxell Cuartero-Balana ◽  
Eva Willaert ◽  
Jordi Martinez-Gomis

Background: We compared photogrammetry-assessed body posture between young adults with and without unilateral posterior crossbite (UPCB). Assessments were controlled by vision, mandibular position and sitting/standing position. In addition, we aimed to determine the relationship between UPCB laterality and the direction of body posture using photogrammetry and a static postural platform. Methods: Adults with natural dentition, with and without UPCB, were enrolled. Static body posture was assessed by photogrammetry based on horizontal acromial alignment and horizontal anterior-superior iliac spine (ASIS) alignment. Frontal photographs were taken with participants asked to open or close their eyes and hold their jaws at rest, at an intercuspal position, and at left or right lateral positions. Distribution of foot pressure was recorded using a static postural platform at different visual input and mandibular positions. General linear models with repeated measures were used to assess the effect of the various within- and between-subject factors. Results: In total, 36 adults (left UPCB = 12; Right UPCB = 6; controls = 18) participated. There were significant differences between the control and UPCB groups in horizontal alignment at the acromion (p = 0.035) and ASIS (p = 0.026) levels when controlled by visual input and mandibular position. No significant differences in horizontal alignment or foot pressure distribution were observed by laterality in the UPCB group. Conclusion: The presence of UPCB affects static body posture, but the side of crossbite is not related to the direction of effect on static body posture.


Sign in / Sign up

Export Citation Format

Share Document