Using Microscopic Images to Predict Plant Diseases in a Deep Learning Environment

2020 ◽  
pp. 807-813
Author(s):  
Priyadarshini Patil ◽  
Prashant Narayankar ◽  
Deepa Mulimani ◽  
Mayur Patil
Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0234806 ◽  
Author(s):  
Bartosz Zieliński ◽  
Agnieszka Sroka-Oleksiak ◽  
Dawid Rymarczyk ◽  
Adam Piekarczyk ◽  
Monika Brzychczy-Włoch

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2388
Author(s):  
Sk Mahmudul Hassan ◽  
Michal Jasinski ◽  
Zbigniew Leonowicz ◽  
Elzbieta Jasinska ◽  
Arnab Kumar Maji

Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively.


Agriculture is the backbone and plays a vital role in many Asian countries. Farmers mainly depend on their agricultural produce for their living. A report says one-third of the farmers income account’s for the agricultural loss which is primarily due to plant diseases. To combat this farmers are in need of a early plant disease identification mechanism. Observation of individual plants in the farm for detecting the disease is labor-intensive and time consuming work, if the farm is vast and multiple plants are cultivated then it’s even worse. To solve such issues, current technologies like the Internet of Things (IoT) and artificial intelligence (AI) and Machine Learning (ML) are used to predict the diseases more effectively. Farmers usually detect plant diseases with the help of images captured manually and analyzed separately by experts. The proposed system renders an efficient solution for detecting multiple diseases in several plant varieties. The system is designed to detect and recognize several plant varieties, specifically pepper, grapes, and strawberry. The proposed system discovers various plant’s various diseases based on the inputs obtained by capturing images from a built-in camera present in the Autonomous rover. The rover also record’s it’s GPS location and makes a map of the entire farm traced and checked by the robot. The images are processed and are classified into their respective categories using deep learning algorithms. Convolutional neural networks the powerful methodology for image classification is the underlying principle applied. The deep learning model’s architecture namely, VGG16 and InceptionResNetV2, are used to train the model. These models are primarily made of convolutional layers. On testing, we recorded am accuracy of 93.21% was obtained from VGG16, and 95.24% from InceptionResNetV2.


2021 ◽  
Vol 11 (4) ◽  
pp. 251-264
Author(s):  
Radhika Bhagwat ◽  
Yogesh Dandawate

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.


2021 ◽  
Author(s):  
Basma A. Mohamed ◽  
Lamees N. Mahmoud ◽  
Walid Al-Atabany ◽  
Nancy M. Salem

2021 ◽  
Vol 11 (1) ◽  
pp. 491-508
Author(s):  
Monika Lamba ◽  
Yogita Gigras ◽  
Anuradha Dhull

Abstract Detection of plant disease has a crucial role in better understanding the economy of India in terms of agricultural productivity. Early recognition and categorization of diseases in plants are very crucial as it can adversely affect the growth and development of species. Numerous machine learning methods like SVM (support vector machine), random forest, KNN (k-nearest neighbor), Naïve Bayes, decision tree, etc., have been exploited for recognition, discovery, and categorization of plant diseases; however, the advancement of machine learning by DL (deep learning) is supposed to possess tremendous potential in enhancing the accuracy. This paper proposed a model comprising of Auto-Color Correlogram as image filter and DL as classifiers with different activation functions for plant disease. This proposed model is implemented on four different datasets to solve binary and multiclass subcategories of plant diseases. Using the proposed model, results achieved are better, obtaining 99.4% accuracy and 99.9% sensitivity for binary class and 99.2% accuracy for multiclass. It is proven that the proposed model outperforms other approaches, namely LibSVM, SMO (sequential minimal optimization), and DL with activation function softmax and softsign in terms of F-measure, recall, MCC (Matthews correlation coefficient), specificity and sensitivity.


Sign in / Sign up

Export Citation Format

Share Document