Cell Adhesion Molecules in Mast Cell Adhesion and Migration

2020 ◽  
pp. 151-171
Author(s):  
Harissios Vliagoftis ◽  
Dean D. Metcalfe
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yasushi Taniguchi

Hoxgenes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development.Hoxgenes are also expressed in various adult tissues and cancer cells. InDrosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.


2006 ◽  
Vol 177 (9) ◽  
pp. 6422-6432 ◽  
Author(s):  
Nataliya M. Kushnir-Sukhov ◽  
Alasdair M. Gilfillan ◽  
John W. Coleman ◽  
Jared M. Brown ◽  
Sandra Bruening ◽  
...  

Author(s):  
Leila Mohammadi ◽  
Bashir Mosayyebi ◽  
Mahsa Imani ◽  
Mohammad Rahmati

Background: Aberrant expression of cell adhesion molecules and matrix metalloproteinase (MMPs) plays a pivotal role in tumor biological processes including progression and metastasis of cancer cells. Targeting these processes and detailed understanding of their underlying molecular mechanism is an essential step in cancer treatment. Dexamethasone (Dex) is a type of synthetic corticosteroid hormone used as adjuvant therapy in combination with current cancer treatments such as chemotherapy in order to alleviate its side effects like acute nausea and vomiting. Recent evidences have suggested that Dex may have antitumor characteristics. Objective: Dex affects the migration and adhesion of T47D breast cancer cells as well as cell adhesion molecules e.g., cadherin and integrin, and MMPs by regulating the expression levels of associated genes. Methods: In this study, we evaluated the cytotoxicity of Dex on the T47D breast cancer cell line through MTT assay. Cell adhesion assay and wound healing assay were performed to determine the impact of Dex on cell adhesion and cell migration, respectively. Moreover, real-time PCR was used to measure the levels of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9. Results: Dex decreased the viability of T47D cells in a time and dose-dependent manner. Cell adhesion and migration of T47D cells were reduced upon Dex treatment. The expression of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9 were altered in response to the Dex treatment. Conclusion: Our findings demonstrated that Dex may have a role in the prevention of metastasis in this cell line.


1993 ◽  
Vol 120 (3) ◽  
pp. 815-824 ◽  
Author(s):  
M Grumet ◽  
A Flaccus ◽  
R U Margolis

Ng-CAM and N-CAM are cell adhesion molecules (CAMs), and each CAM can bind homophilically as demonstrated by the ability of CAM-coated beads (Covaspheres) to self-aggregate. We have found that the extent of aggregation of Covaspheres coated with either Ng-CAM or N-CAM was strongly inhibited by the intact 1D1 and 3F8 chondroitin sulfate proteoglycans of rat brain, and by the core glycoproteins resulting from chondroitinase treatment of the proteoglycans. Much higher concentrations of rat chondrosarcoma chondroitin sulfate proteoglycan (aggrecan) core proteins had no significant effect in these assays. The 1D1 and 3F8 proteoglycans also inhibited binding of neurons to Ng-CAM when mixtures of these proteins were adsorbed to polystyrene dishes. Direct binding of neurons to the proteoglycan core glycoproteins from brain but not from chondrosarcoma was demonstrated using an assay in which cell-substrate contact was initiated by centrifugation, and neuronal binding to the 1D1 proteoglycans was specifically inhibited by the 1D1 monoclonal antibody. Different forms of the 1D1 proteoglycan have been identified in developing and adult brain. The early postnatal form (neurocan) was found to bind neurons more effectively than the adult proteoglycan, which represents the C-terminal half of the larger neurocan core protein. Our results therefore indicate that certain brain proteoglycans can bind to neurons, and that Ng-CAM and N-CAM may be heterophilic ligands for neurocan and the 3F8 proteoglycan. The ability of these brain proteoglycans to inhibit adhesion of cells to CAMs may be one mechanism to modulate cell adhesion and migration in the nervous system.


2017 ◽  
Vol 95 (4) ◽  
pp. 372-381 ◽  
Author(s):  
Seongdo Jeong ◽  
Sae-Kwang Ku ◽  
Jong-Sup Bae

Transforming growth factor β induced protein (TGFBIp) is an extracellular matrix protein expressed in several cell types in response to TGF-β. TGFBIp is released by human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Pelargonidin (PEL) is a well-known red pigment found in plants, and has been reported as having important biological activities that are potentially beneficial for human health. This study was undertaken to investigate whether PEL can modulate TGFBIp-mediated inflammatory responses in HUVECs and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocyte adhesion and migration, and activation of proinflammatory proteins in TGFBIp-activated HUVECs and mice. In addition, the beneficial effects of PEL on survival rate in a mouse sepsis model were tested. We found that PEL inhibited TGFBIp-induced barrier disruption, expression of cell adhesion molecules and adhesion/transendothelial migration of neutrophils to human endothelial cells. PEL also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that PEL possesses anti-inflammatory properties that result in inhibition of hyperpermeability, expression of cell adhesion molecules, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.


2002 ◽  
Vol 13 (1) ◽  
pp. 62-70 ◽  
Author(s):  
G. Li ◽  
K. Satyamoorthy ◽  
M. Herlyn

Melanoma development not only involves genetic and epigenetic changes that take place within the cell, but also involves processes determined collectively by micro-environmental factors, including cell-cell interactions and communications. During the transition from normal cells to benign and malignant lesions, and subsequently to metastatic cancer, stepwise changes in intercellular communications provide tumor cells with the ability to overcome cell-cell adhesion and micro-environmental controls from the host and to invade surrounding tissues and disperse to distant locations. Cadherins are major cell–cell adhesion molecules involved in the development and maintenance of skin. E-cadherin expressed in normal melanocytes mediates growth and invasion control by keratinocytes. Progressive loss of E-cadherin and gain of N-cadherin during melanoma development not only free melanoma cells from control by keratinocytes, but also provide new adhesion properties, resulting in switched partnerships with fibroblasts and vascular endothelial cells. The cadherin subtype switching also dictates gap junctional specificity in melanocytic cells during tumor development. This selective intercellular communication may contribute to the regulation of cell growth, differentiation, apoptosis, and migration of melanocytic cells in both physiologic and pathologic conditions. Abnormal up-regulation of the immunoglobin repeat-containing cell adhesion molecules Mel-CAM and L1-CAM potentiates invasion and migration of melanoma. Thus, abnormal expression of intercellular adhesion receptors and dysregulated intercellular communication underlies melanoma development and progression.


1999 ◽  
Vol 19 (5-6) ◽  
pp. 41 ◽  
Author(s):  
Francisco Sanchez-Madrid ◽  
Roberto González-Amaro

Sign in / Sign up

Export Citation Format

Share Document