Long water tunnel inspections by remotely operated vehicle

2020 ◽  
pp. 259-263
Author(s):  
Robert (Bob) Clarke ◽  
P. Eng ◽  
Carmelo (Carmen) Sferrazza
2018 ◽  
Vol 1 (6) ◽  
Author(s):  
Eduardo Alvarez-Alvarez ◽  
Aitor Fernandez-Jimenez ◽  
Manuel Rico-Secades ◽  
Antonio Javier Calleja-Rodriguez ◽  
Joaquin Fernandez-Francos ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


Author(s):  
Weiqun Geng ◽  
Douglas Pennell ◽  
Stefano Bernero ◽  
Peter Flohr

Jets in cross flow are one of the fundamental issues for mixing studies. As a first step in this paper, a generic geometry of a jet in cross flow was simulated to validate the CFD (Computational Fluid Dynamics) tool. Instead of resolving the whole injection system, the effective cross-sectional area of the injection hole was modeled as an inlet surface directly. This significantly improved the agreement between the CFD and experimental results. In a second step, the calculated mixing in an ALSTOM EV burner is shown for varying injection hole patterns and momentum flux ratios of the jet. Evaluation of the mixing quality was facilitated by defining unmixedness as a global non-dimensional parameter. A comparison of ten cases was made at the burner exit and on the flame front. Measures increasing jet penetration improved the mixing. In the water tunnel the fuel mass fraction within the burner and in the combustor was measured across five axial planes using LIF (Laser Induced Fluorescence). The promising hole patterns chosen from the CFD computations also showed a better mixing in the water tunnel than the other. Distribution of fuel mass fraction and unmixedness were compared between the CFD and LIF results. A good agreement was achieved. In a final step the best configuration in terms of mixing was checked with combustion. In an atmospheric test rig measured NOx emissions confirmed the CFD prediction as well. The most promising case has about 40% less NOx emission than the base case.


Sign in / Sign up

Export Citation Format

Share Document