Strategies to Improve the Performance of Microbial BiosensorsArtificial Intelligence, Genetic Engineering, Nanotechnology, and Synthetic Biology

Author(s):  
Natalia J. Sacco ◽  
Juan Carlos Suárez-Barón ◽  
Eduardo Cortón ◽  
Susan R. Mikkelsen
Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Manuel Porcar

Synthetic biology is an engineering view on biotechnology, which has revolutionized genetic engineering. The field has seen a constant development of metaphors that tend to highlight the similarities of cells with machines. I argue here that living organisms, particularly bacterial cells, are not machine-like, engineerable entities, but, instead, factory-like complex systems shaped by evolution. A change of the comparative paradigm in synthetic biology from machines to factories, from hardware to software, and from informatics to economy is discussed.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Dominick Matteau ◽  
Marie-Eve Pepin ◽  
Vincent Baby ◽  
Samuel Gauthier ◽  
Mélissa Arango Giraldo ◽  
...  

ABSTRACT The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication (oriC) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10−6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florum oriC intergenic region or the heterologous oriC region of Mycoplasma capricolum, Mycoplasma mycoides, or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli, reaching frequencies up to 7.87 × 10−6 and 8.44 × 10−7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum. Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum-based near-minimal cellular chassis for synthetic biology. IMPORTANCE Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides cluster of mycoplasmas, which has become a model for whole-genome cloning, genome transplantation, and genome minimization. However, M. florum shows higher growth rates than other Mollicutes, has no known pathogenic potential, and possesses a significantly smaller genome that positions this species among some of the simplest free-living organisms. So far, the lack of genetic engineering tools has limited our capacity to understand the basic biology of M. florum in order to modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first artificial plasmids and transformation methods for this bacterium. This represents a strong basis for ongoing genome engineering efforts using this near-minimal microorganism.


2020 ◽  
Vol 185 (7-8) ◽  
pp. e952-e957 ◽  
Author(s):  
C Raina MacIntyre

Abstract Introduction Smallpox, caused by variola virus, was eradicated in 1980, but remains a category A bioterrorism agent. A decade ago, smallpox ranked second after anthrax in a multifactorial risk priority scoring analysis of category A bioterrorism agents. However, advances in genetic engineering and synthetic biology, including published methods for synthesizing an Orthopoxvirus, require the assumptions of this scoring for smallpox and other category A agents to be reviewed. Materials and Methods The risk priority framework was reviewed and revised to account for the capability for creation of synthetic or engineered smallpox and other category A agents. Results The absolute score for all agents increased because of gene editing and synthetic biology capability, which was not present when the framework was developed more than a decade ago, although new treatments revised scores downward for smallpox, Ebola, and botulism. In the original framework, smallpox scored 0 for global availability, given the high security around known seed stocks of variola in two laboratories in the United States and Russia. Now, smallpox can be created using synthetic biology, raising the score for this criterion to 2. Other agents too, such as Ebola, score higher for availability, based on synthetic biology capability. When advances in synthetic biology and genetic engineering are considered, smallpox and anthrax are now equally ranked the highest category A bioterrorism agents for planning and preparedness. Conclusions Revision of a risk priority framework for category A bioterrorism agents shows that smallpox should be elevated in priority for preparedness planning, and that gene editing and synthetic biology raises the overall risk for all agents. The ranking of categories A, B, and C agents should also be revisited, as there is an endless possibility of engineered threats that may be more severe than any agent on the category A list.


2020 ◽  
Vol 21 (23) ◽  
pp. 9185
Author(s):  
Amritpal Singh ◽  
Kenneth T. Walker ◽  
Rodrigo Ledesma-Amaro ◽  
Tom Ellis

Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.


2021 ◽  
pp. 37-58
Author(s):  
R. Alexander Hamilton ◽  
Ruth Mampuys ◽  
S. E. Galaitsi ◽  
Aengus Collins ◽  
Ivan Istomin ◽  
...  

AbstractSynthetic biology promises to make biology easier to engineer (Endy 2005), enabling more people in less formal research settings to participate in modern biology. Leveraging advances in DNA sequencing and synthesis technologies, genetic assembly methods based on standard biological parts (e.g. BioBricks), and increasingly precise gene-editing tools (e.g. CRISPR), synthetic biology is helping increase the reliability of and accessibility to genetic engineering. Although potentially enabling tremendous opportunities for the advancement of the global bioeconomy, opening new avenues for the creation of health, wealth and environmental sustainability, the possibility of a more ‘democratic’ (widely accessible) bioengineering capability could equally yield new opportunities for accidental, unintended or deliberate misuse. Consequently, synthetic biology represents a quintessential ‘dual-use’ biotechnology – a technology with the capacity to enable significant benefits and risks (NRC 2004).


2013 ◽  
Vol 17 (1) ◽  
pp. 26-35
Author(s):  
Robin Attfield

Biocentrism maintains that all living creatures have moral standing, but need not claim that all have equal moral significance. This moral standing extends to organisms generated through human interventions, whether by conventional breeding, genetic engineering, or synthetic biology. Our responsibilities with regard to future generations are relevant to non-human species as well as future human generations. Likewise, the Precautionary Principle raises objections to the generation of serious or irreversible harm or changes to the quality of human or non-human life, and needs to be applied when the introduction of synthetic biotechnology is envisaged. Consideration of this Principle supplements the problems raised for synthetic biology from a biocentric perspective. The bearing of biocentrism on religions is also considered, together with contrasting views about science, religion and the creation of life.


Sign in / Sign up

Export Citation Format

Share Document