Concept of effective stress and shear strength interaction in governing soil settlement

Author(s):  
Mohd Jamaludin Noor
2015 ◽  
Vol 52 (12) ◽  
pp. 2067-2076 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Marc Lebeau

A number of investigations have shown that the shear strength of unsaturated soils can be defined in terms of effective stress. The difficulty in this approach lies in quantifying the effective stress parameter, or Bishop’s parameter. Although often set equal to the degree of saturation, it has recently been suggested that the effective stress parameter should be related to an effective degree of saturation, which defines the fraction of water that contributes to soil strength. A problematic element in this approach resides in differentiating the water that contributes to soil strength from that which does not contribute to soil strength. To address this difficulty, the paper uses theoretical considerations and experimental observations to partition the water retention function into capillary and adsorptive components. Given that the thin liquid films of adsorbed water should not contribute to effective stress, the effective stress parameter is solely related to the capillary component of water retention. In sample calculations, this alternative effective stress parameter provided very good agreement with experimental data of shear strength for a variety of soil types.


2020 ◽  
Vol 843 ◽  
pp. 132-137
Author(s):  
Asmidar Alias ◽  
Mohd Jamaludin Md Noor ◽  
Abdul Samad Abdul Rahman

Soil settlement is normally quantified using conventional soil volume change models which are solely based on the effective stress and the role of shear strength is ignored due to the difficulties to incorporate in the framework. The Rotational Multiple Yield Surface Framework (RMYSF) is a soil volume change model developed from the standpoint of the interaction between the effective stress and shear strength. RMYSF incorporates the development of mobilised shear strength within the body of the soil whenever the soil is subjected to anisotropic compression. Currently the framework has been applied to predict the soil anisotropic stress-strain behaviour at any effective stress. This paper present the enhancement of this volume change framework using normalisation of axial strain with the understanding that the failure axial strain is not unique, but increases as the effective stress increases. This technique has essentially produced a better accuracy in the prediction of the stress-strain response for Malaysian residual soils. A series of drained tri-axial tests under various effective stresses has been conducted using specimens of 50mm diameter and 100mm height and from the stress-strain curves the inherent mobilised shear strength envelopes at various axial strains have been determined. These mobilised shear strength envelopes were then applied for the prediction of the soil stress-strain response. An excellent agreement between the predicted and the actual stress-strain curves has been achieved.


1965 ◽  
Vol 2 (3) ◽  
pp. 274-286
Author(s):  
Alan E Insley

The paper describes the failure during construction of a proposed 70 ft. high railway embankment fill. The fill was built of a uniform clay of medium plasticity which was used at an average moisture content of 3 per cent greater than had been provided for in the design. The fill failed under its own weight when it reached a height of 55 feet.In order to assist in the design of stabilizing works three test holes were drilled in the fill and soil samples recovered. Properties of field compacted and laboratory compacted soil samples are compared. The age of both types of samples is shown to have a significant effect on the test results.Both total and effective stress analyses of the embankment at failure have been performed using the laboratory values of soil strength. The total stress analysis gives a safety factor of 1.0 at failure whereas the effective stress analysis gives a safety factor of 1.2. The hazards of choosing the correct value of laboratory shear strength for the total stress analysis are discussed.


2012 ◽  
Vol 256-259 ◽  
pp. 108-111
Author(s):  
Seboong Oh ◽  
Ki Hun Park ◽  
Oh Kyun Kwon ◽  
Woo Jung Chung ◽  
Kyung Joon Shin

The hypothesis on effective stress of unsaturated soils is validated by consolidation strength results of triaxial tests for the compacted residual soil. The effective stress can describe the unsaturated soil behavior, which was defined from shear strength or from soil water characteristic curves. Since the effective stress from consolidation agrees with that from the shear strength, the effective stress from soil water retention curve could describe the unsaturated behavior consistently on both consolidation path and stress at failure. The effective stress can describe the entire unsaturated behavior from consolidation to failure.


2008 ◽  
Vol 45 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Adriano Virgilio Damiani Bica ◽  
Luiz Antônio Bressani ◽  
Diego Vendramin ◽  
Flávia Burmeister Martins ◽  
Pedro Miguel Vaz Ferreira ◽  
...  

This paper discusses results of laboratory tests carried out with a residual soil originated from the weathering of eolian sandstone from southern Brazil. Parent rock features, like microfabric and particle bonding, are remarkably well preserved within this residual soil. Stiffness and shear strength properties were evaluated with consolidated drained (CID) and consolidated undrained (CIU) triaxial compression tests. Undisturbed specimens were tested with two different orientations between the specimen axis and bedding surfaces (i.e., parallel (δ = 0°) or perpendicular (δ = 90°)) to investigate the effect of anisotropy. When CID triaxial tests were performed with δ = 0°, the yield surface associated with the structure was much larger than when tests were performed with δ = 90°. Coincidently, CIU tests with δ = 0° showed peak shear strengths much greater than for δ = 90° at comparable test conditions. Once the peak shear strength was surpassed, CIU tests followed collapse-type effective stress paths not shown by corresponding tests with remolded specimens. A near coincidence was observed between the yield surface determined with CID tests and the envelope of collapse-type effective stress paths for δ = 0° and δ = 90°.


2008 ◽  
Vol 45 (9) ◽  
pp. 1310-1323 ◽  
Author(s):  
S. Sivathayalan ◽  
P. Logeswaran

An experimental study of the behaviour of an alluvial sand under different strain increment paths representing shear–volume coupled deformation is presented. Both pore pressure and pore volume change simultaneously in these tests. Linear strain paths with different levels of limiting volumetric strain and nonlinear strain paths that simulate different pore pressure boundary conditions were applied to the soil specimen in the laboratory. The strain paths imposed included both expansive and contractive volumetric deformation. Nonuniform excess pore pressures generated during earthquakes (on account of the heterogeneity in natural soils) often lead to such deformation in situ following the end of strong shaking. The shear strength of the soil could decrease significantly when the pore pressure boundary conditions result in volume inflow that leads to a considerable reduction of the effective confining stress. The rate of volume inflow plays a significant role on the resulting stress–strain and pore pressure responses. Both the peak and the minimum shear strength mobilized during the test were significantly dependent on the strain path. The effective stress ratio at the instant of peak pore pressure is independent of the strain path followed, and it is equal to the effective stress ratio noted at the instant of phase transformation in undrained tests.


Sign in / Sign up

Export Citation Format

Share Document