effective stress ratio
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Xinpu Shen

Abstract This paper presents an integrated workflow for feasibility study of cuttings reinjection (CRI) based on 3D geomechanics analysis. Solutions of various mechanical variables obtained with 3D geomechanics analysis at various level of scale are used as basis for designing parameters of CRI. Solutions of geomechanics analysis provide basis for a feasibility study and/or design of CRI: solution of 3D geostress distribution and the effective stress ratio are the essential factors for selecting the best location of injection well; solution of 1D geomechanics analysis provides basis for choice of true vertical depth (TVD) interval for injection sections; and hydraulic fracturing performed in the framework of 3D geomechanics analysis provides the most accurate solution for both the injection pressure window and fault reactivation related to CRI as well as estimation of seismic behavior. Example of feasibility study of cuttings reinjection with the integrated workflow proposed here is presented with data from a case in offshore West Africa. Solutions of geomechanics analysis are used for decision making at various stages of CRI. There are several faults in this region. The location of the injection well is chosen at a place with principal stress ratio's value at 0.68. The interval of injection well section is chosen as a 140-ft section with center at TVD = 6,700 ft. The numerical solution of injection pressure window is defined with 46 MPa as lower bound and 80 MPa as upper bound. The width of the fracture is 0.069 m, and length and height are 4,000 m and 100 m respectively. The accommodation volume of fluid with cuttings is 2.76×104 m3. The maximum magnitude of Richter scale of the seismicity corresponding to the fault reactivation is 3.15. The case study described in this paper provides an integrated workflow for feasibility study of CRI based on 3D geomechanics analysis. A best practice for this type of CRI design is also presented.


2021 ◽  
Vol 882 ◽  
pp. 296-327
Author(s):  
Chandra Kant ◽  
G.A. Harmain

Loading history makes fatigue crack propagation modelling complex. This article focus on life prediction models which take into consideration the variability of fluctuating loads. In particular it emphases on the comparative studies of prediction models involving the significance of one model’s over another. The paper studies models based on multifarious loadings (constant amplitude load, variable amplitude load, overload/underload etc.). The major parameters of load interaction modelling are plasticity, crack closure, effective stress intensity, effective stress ratio and damage accumulation. For large deformation, elasto-plastic fracture mechanics based models are also included. The complexity of models, their features and focusing on their limitation and strengths are stated with various conditions and also validation of models with experimental data are reported. The paper speculates on the directions the study of crack propagation will take in future.


Author(s):  
Raed Hasan ◽  
Tugce Kasikci ◽  
Igor Tsukrov ◽  
Brad L. Kinsey

In this paper, the key assumptions in the M-K and effective stress ratio models are investigated for AISI 1018 steel specimens with a thickness of 0.78 mm using experimental and numerical data from Marciniak tests. The experimental procedure included Digital Imaging Correlation (DIC) to measure the major and minor in-plane strains. Strain components were obtained at points inside (i.e., the defect region) and adjacent (i.e., the safe regions) to the high strain concentrations for four different strain paths. In the numerical analysis, FEA simulations with Marc Mentat were performed with shell elements to investigate the four specimen geometries. The key assumptions of interest are the incremental major strain ratio from M-K model and the critical stress concentration factor from effective stress ratio model. Thus, the mechanics- and material-based failure phenomena in these two analytical models are examined in this paper to provide insight into the material behavior at failure. Also, data are presented that shows clearly the localization (both size and strain value) for the various strain paths.


2012 ◽  
Vol 49 (8) ◽  
pp. 891-906 ◽  
Author(s):  
Md.A.L. Baki ◽  
M.M. Rahman ◽  
S.R. Lo ◽  
C.T. Gnanendran

The underlying mechanism of static and cyclic liquefaction of loose contractant sandy soil is unstable behaviour associated with deviatoric strain-softening. Such unstable (strain-softening) behaviour has been referred to as static or cyclic instability depending on whether the loading condition is monotonic or cyclic. Past research into linkage between static instability and cyclic instability of sand with fines is based largely on comparing monotonic and one-way cyclic loading behaviour of specimens of the same void ratio and fines content. In this article, the authors attempt to link the condition that defines triggering of cyclic instability to that of static instability of specimens of different void ratios and fines contents. This is achieved by the proposed concept of equivalent granular state parameter. Two specimens are considered as equivalent if they have the same equivalent granular state parameters at the start of undrained shearing. The effective stress ratio at triggering of static instability can be used to predict impending cyclic instability of an equivalent specimen of different fines content and void ratio. This linkage between static and cyclic instability was evaluated for a wide range of fines contents, initial mean effective stresses, and types of cyclic loading. The last factor includes symmetrical and nonsymmetrical two-way cyclic loading.


Author(s):  
Raed Hasan ◽  
Tugce Kasikci ◽  
Igor Tsukrov ◽  
Brad L. Kinsey

In this paper, the key assumptions in the M-K and effective stress ratio models are investigated for AISI 1018 steel specimens with a thickness of 0.78 mm using experimental and numerical data from Marciniak tests. The experimental procedure included Digital Imaging Correlation (DIC) to measure the major and minor in-plane strains. Strain components were obtained at points inside (i.e., the defect region) and adjacent (i.e., the safe regions) to the high strain concentrations for four different strain paths. In the numerical analysis, FEA simulations with Marc Mentat were performed with shell elements to investigate the four specimen geometries. The key assumptions of interest are the incremental major strain ratio from M-K model and the critical stress concentration factor from effective stress ratio model. Thus, the mechanics- and material-based failure phenomena in these two analytical models are examined in this paper to provide insight into the material behavior at failure.


2008 ◽  
Vol 45 (9) ◽  
pp. 1310-1323 ◽  
Author(s):  
S. Sivathayalan ◽  
P. Logeswaran

An experimental study of the behaviour of an alluvial sand under different strain increment paths representing shear–volume coupled deformation is presented. Both pore pressure and pore volume change simultaneously in these tests. Linear strain paths with different levels of limiting volumetric strain and nonlinear strain paths that simulate different pore pressure boundary conditions were applied to the soil specimen in the laboratory. The strain paths imposed included both expansive and contractive volumetric deformation. Nonuniform excess pore pressures generated during earthquakes (on account of the heterogeneity in natural soils) often lead to such deformation in situ following the end of strong shaking. The shear strength of the soil could decrease significantly when the pore pressure boundary conditions result in volume inflow that leads to a considerable reduction of the effective confining stress. The rate of volume inflow plays a significant role on the resulting stress–strain and pore pressure responses. Both the peak and the minimum shear strength mobilized during the test were significantly dependent on the strain path. The effective stress ratio at the instant of peak pore pressure is independent of the strain path followed, and it is equal to the effective stress ratio noted at the instant of phase transformation in undrained tests.


Author(s):  
Naoto Kasahara ◽  
Hideki Takasho ◽  
Nobuchika Kawasaki ◽  
Masanori Ando

Tubesheet structures utilized in heat exchangers have complex perforated portions. For realistic design analysis, axisymmetric models with equivalent solid materials of perforated plate are conventionally adopted to simplify perforated area (figure1). Sec.III Appendix A-8000 (ASME 2004) provides elastic equivalent solid materials for flat tubesheets. Plastic properties were studied by Porowski et al. (1974), Gorden et al. (2002) and so on. Elevated temperature design of tubesheets requires plastic and creep properties in addition. The purpose of this study is to develop a general determination method of non-linear equivalent material properties for perforated plates and to confirm their applicability to both flat and spherical tubesheets. Main loadings of tubesheets in fast reactor heat exchanges are inner pressure and thermal stress at transient operations. Under above conditions, average stress of perforated area becomes approximately equi-biaxial. Therefore, average inelastic behaviors of various perforated plates subjected to equi-biaxial field were investigated by inelastic finite element method. Though above investigations, Authors clarified that perforated plates have their own effective stress ratio (ESR). ESR is a function of geometry and is independent from their materials. ESR can determine non-linear equivalent material properties of perforated plates for any kind of constitutive equations of base metals. For simplified inelastic analysis of perforated plates, the brief equations were proposed to determine equivalent plastic and creep material properties for perforated plates. It is considered that physical meaning of ESR is an effective stress ratio between perforated plates and equivalent solid plates. ESR is a function of geometry and is independent from constitutive equations. ESR can determine non-linear equivalent material properties for perforated plates from any kind of constitutive equations of base materials. Assumptions in ESR are von Mises’s equivalent stress-strain relationship and equi-biaxial loadings. Applicability of ESR was investigated through finite element analyses of various flat and spherical tubesheets.


2006 ◽  
Vol 43 (11) ◽  
pp. 1195-1212 ◽  
Author(s):  
Zeina Finge ◽  
Thiep Doanh ◽  
Phillippe Dubujet

The undrained behaviour of loose and overconsolidated Hostun RF sand in triaxial compression and extension tests is described. The samples are isotropically or anisotropically overconsolidated along several constant effective stress ratio paths with various overconsolidation ratios (OCR), up to 24. To minimize the effect of variation of density on the observed undrained behaviour, all tested samples are required to have a nearly identical void ratio before the final monotonic undrained shearing. Isotropically overconsolidated and normally consolidated samples exhibit the same phenomenon of partial static liquefaction, but anisotropically overconsolidated specimens reveal a completely different undrained behaviour. A common pseudoelastic response is observed for a given overconsolidation history. This response is induced by recent stress history in terms of effective stress paths, independent of the OCR during overconsolidation. The initial gradient of the effective stress paths seems to depend solely on the direction of the previous linear stress path history. This paper offers a comprehensive understanding of the mechanism of the induced anisotropy of loose sand created by simple linear stress paths from three different initial stress states in the classical triaxial plane. The pseudoelastic response can be adequately modelled by a simple hyperelastic component of the elastoplastic framework.Key words: induced anisotropy, overconsolidation, instability, laboratory undrained tests, sand, hyperelasticity.


Sign in / Sign up

Export Citation Format

Share Document