Exploration of Deep RNN Architectures: LSTM and Gru in Medical Diagnostics of Cardiovascular and Neuro Diseases

Author(s):  
R. Rajmohan ◽  
M. Pavithra ◽  
T. Ananth Kumar ◽  
P. Manjubala
Keyword(s):  
Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 128-138
Author(s):  
Mikhail N. Kramm ◽  
◽  
Galina V. Zhikhareva ◽  
Sergey A. Zhgoon ◽  
Nikolay О. Strelkov ◽  
...  
Keyword(s):  

2012 ◽  
Vol 57 (3) ◽  
pp. 829-835 ◽  
Author(s):  
Z. Głowacz ◽  
J. Kozik

The paper describes a procedure for automatic selection of symptoms accompanying the break in the synchronous motor armature winding coils. This procedure, called the feature selection, leads to choosing from a full set of features describing the problem, such a subset that would allow the best distinguishing between healthy and damaged states. As the features the spectra components amplitudes of the motor current signals were used. The full spectra of current signals are considered as the multidimensional feature spaces and their subspaces are tested. Particular subspaces are chosen with the aid of genetic algorithm and their goodness is tested using Mahalanobis distance measure. The algorithm searches for such a subspaces for which this distance is the greatest. The algorithm is very efficient and, as it was confirmed by research, leads to good results. The proposed technique is successfully applied in many other fields of science and technology, including medical diagnostics.


Author(s):  
Igor I. Koltunov ◽  
Anton V. Panfilov ◽  
Ivan A. Poselsky ◽  
Nikolay N. Chubukov ◽  
Ivan V. Krechetov ◽  
...  

2017 ◽  
Vol 24 (25) ◽  
Author(s):  
Yuriy S. Marfin ◽  
Alexey V. Solomonov ◽  
Alexander S. Timin ◽  
Evgeniy V. Rumyantsev

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Heinz Mustroph

Abstract Oxonol dyes are classified as anionic polymethine dyes, which cover a wide variety of structural types. The name of the class originates from the oxygen atoms which terminate each end of the polymethine chains that form the backbone of their structure. In technically useful dyes, these oxygen atoms tend to be substituents of heterocycles. The main technical application of water soluble oxonol dyes was in silver halide photography as filter dyes and antihalation dyes. Lipophilic oxonol dyes are used in bio-analysis and medical diagnostics to stain cells, bacteria or liposomes for example. Their main bioanalytical usage is in the determination of membrane potentials in eukaryotic cells and prokaryotic bacteria.


Human Affairs ◽  
2021 ◽  
Vol 31 (2) ◽  
pp. 149-164
Author(s):  
Dmytro Mykhailov

Abstract Contemporary medical diagnostics has a dynamic moral landscape, which includes a variety of agents, factors, and components. A significant part of this landscape is composed of information technologies that play a vital role in doctors’ decision-making. This paper focuses on the so-called Intelligent Decision-Support System that is widely implemented in the domain of contemporary medical diagnosis. The purpose of this article is twofold. First, I will show that the IDSS may be considered a moral agent in the practice of medicine today. To develop this idea I will introduce the approach to artificial agency provided by Luciano Floridi. Simultaneously, I will situate this approach in the context of contemporary discussions regarding the nature of artificial agency. It is argued here that the IDSS possesses a specific sort of agency, includes several agent features (e.g. autonomy, interactivity, adaptability), and hence, performs an autonomous behavior, which may have a substantial moral impact on the patient’s well-being. It follows that, through the technology of artificial neural networks combined with ‘deep learning’ mechanisms, the IDSS tool achieves a specific sort of independence (autonomy) and may possess a certain type of moral agency. Second, I will provide a conceptual framework for the ethical evaluation of the moral impact that the IDSS may have on the doctor’s decision-making and, consequently, on the patient’s wellbeing. This framework is the Object-Oriented Model of Moral Action developed by Luciano Floridi. Although this model appears in many contemporary discussions in the field of information and computer ethics, it has not yet been applied to the medical domain. This paper addresses this gap and seeks to reveal the hidden potentialities of the OOP model for the field of medical diagnosis.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 986
Author(s):  
Md Rifat Hasan ◽  
Nepu Saha ◽  
Thomas Quaid ◽  
M. Toufiq Reza

Carbon quantum dots (CQDs) are nanomaterials with a particle size range of 2 to 10 nm. CQDs have a wide range of applications such as medical diagnostics, bio-imaging, biosensors, coatings, solar cells, and photocatalysis. Although the effect of various experimental parameters, such as the synthesis method, reaction time, etc., have been investigated, the effect of different feedstocks on CQDs has not been studied yet. In this study, CQDs were synthesized from hydroxymethylfurfural, furfural, and microcrystalline cellulose via hydrothermal carbonization at 220 °C for 30 min of residence time. The produced CQDs showed green luminescence behavior under the short-wavelength UV light. Furthermore, the optical properties of CQDs were investigated using ultraviolet-visible spectroscopy and emission spectrophotometer, while the morphology and chemical bonds of CQDs were investigated using transmission electron microscopy and Fourier-transform infrared spectroscopy, respectively. Results showed that all CQDs produced from various precursors have absorption and emission properties but these optical properties are highly dependent on the type of precursor. For instance, the mean particle sizes were 6.36 ± 0.54, 5.35 ± 0.56, and 3.94 ± 0.60 nm for the synthesized CQDs from microcrystalline cellulose, hydroxymethylfurfural, and furfural, respectively, which appeared to have similar trends in emission intensities. In addition, the synthesized CQDs experienced different functionality (e.g., C=O, O-H, C-O) resulting in different absorption behavior.


Author(s):  
Jijo Lukose ◽  
Sanoop Pavithran M. ◽  
Mithun N. ◽  
Ajaya Kumar Barik ◽  
Keerthilatha M. Pai ◽  
...  

AbstractHuman saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35 ◽  
Author(s):  
Anshul Sharma ◽  
Irvine Lian Hao Ong ◽  
Anupam Sengupta

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to highly sensitive concentration and temperature dependent properties. Yet, microscale insights into confined LCLCs, specifically in the context of confinement geometry and surface properties, are lacking. Here, we report the emergence of time dependent textures in static disodium cromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use a combination of soft lithography, surface characterization, and polarized optical imaging to generate and analyze the confinement-induced LCLC textures and demonstrate that over time, herringbone and spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition, propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinement geometry, anchoring conditions, and the initial DSCG concentration, we can systematically tune the temporal dynamics of the N- to M-phase transition and textural behavior of the confined LCLC. Overall, the time taken to change from nematic to the characteristic M-phase textures decreased as the confinement aspect ratio (width/depth) increased. For a given aspect ratio, the transition to the M-phase was generally faster in degenerate planar confinements, relative to the transition in homeotropic confinements. Since the static molecular states register the initial conditions for LC flows, the time dependent textures reported here suggest that the surface and confinement effects—even under static conditions—could be central in understanding the flow behavior of LCLCs and the associated transport properties of this versatile material.


Sign in / Sign up

Export Citation Format

Share Document