scholarly journals Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections

Author(s):  
Jijo Lukose ◽  
Sanoop Pavithran M. ◽  
Mithun N. ◽  
Ajaya Kumar Barik ◽  
Keerthilatha M. Pai ◽  
...  

AbstractHuman saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.

2020 ◽  
Vol 7 (5) ◽  
pp. 9-20
Author(s):  
Claudia Bale

Objective: The aim of this mixed-methods study is to capture and understand impoverished Guatemalan community members’ perspectives of their own health needs on a community level in order to guide Hope of Life (HOL) Non-Profit organization’s health promotion interventions in the villages they serve. Methods: A modified health needs assessment survey was conducted with 96 participants from four impoverished villages in the department of Zacapa, Guatemala. Survey responses were analyzed for significant differences in 4-item individual, family, and community health scores across demographic variables and significant correlations with reported personal health conditions and children’s health conditions. Five semi-structured interviews were also conducted with community leaders from three of the villages surveyed. Interviews were audio recorded and responses were transcribed verbatim and translated from Spanish to English. Thematic analysis using HyperRESEARCH qualitative analysis software version 4.5.0. was conducted to identify major themes. Results: The mean age of the 96 participants surveyed was 40.4 years and the majority were women, married or in Union, and have children. Women reported a significantly lower individual and family health score than men. The most rural village included in the study had significantly lower family health scores than the three sub-urban villages in the study. Among the personal health problems reported by participants, alcohol consumption, dental problems, and malnutrition were significant predictors of lower individual health scores. Themes that emerged from the interview analysis included the greatest community health needs, perceived negative community health behaviors, barriers to health care access, HOL’s impact, and suggestions for community health promotion.   Conclusion: The results of this study reveal many unmet health needs and barriers to healthcare that Guatemalan village communities face. Community-based participatory research using a mixed approach voices communities’ perspective on their perceived needs and is an important tool to guide non-profit aid and intervention serving impoverished communities.


Author(s):  
Shuo Zhang ◽  
Frederieke A. M. van der Mee ◽  
Roel J. Erckens ◽  
Carroll A. B. Webers ◽  
Tos T. J. M. Berendschot

AbstractIn this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 813 ◽  
Author(s):  
Marta Janczuk-Richter ◽  
Beata Gromadzka ◽  
Łukasz Richter ◽  
Mirosława Panasiuk ◽  
Karolina Zimmer ◽  
...  

Since the norovirus is the main cause of acute gastroenteritis all over the world, its fast detection is crucial in medical diagnostics. In this work, a rapid, sensitive, and selective optical fiber biosensor for the detection of norovirus virus-like particles (VLPs) is reported. The sensor is based on highly sensitive long-period fiber gratings (LPFGs) coated with antibodies against the main coat protein of the norovirus. Several modification methods were verified to obtain reliable immobilization of protein receptors on the LPFG surface. We were able to detect 1 ng/mL norovirus VLPs in a 40-min assay in a label-free manner. Thanks to the application of an optical fiber as the sensor, there is a possibility to increase the user’s safety by separating the measurement point from the signal processing setup. Moreover, our sensor is small and light, and the proposed assay is straightforward. The designed LPFG-based biosensor could be applied in both fast norovirus detection and in vaccine testing.


2020 ◽  
Author(s):  
Julia Brunmair ◽  
Laura Niederstaetter ◽  
Benjamin Neuditschko ◽  
Andrea Bileck ◽  
Astrid Slany ◽  
...  

AbstractMetabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues and are impractical for performing time-course studies. The analysis of the minute amounts of sweat sampled from the fingertip enables a solution to this challenge. Sweat sampling from the fingertip is non-invasive and robust and can be accomplished repeatedly by untrained personnel. This matrix represents a rich source for metabolomic phenotyping, which is exemplified by the detection of roughly 50’000 features per sample. Moreover, the determined limits of detection demonstrate that the ingestion of 200 μg of a xenobiotic may be sufficient for its detection in sweat from the fingertip. The feasibility of short interval sampling of sweat from the fingertips was confirmed in three time-course studies after coffee consumption or ingestion of a caffeine capsule, successfully monitoring all known caffeine metabolites. Fluctuations in the rate of sweat production were accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. Biomonitoring using sweat from the fingertip has far reaching implications for personalised medical diagnostics and biomarker discovery.


Author(s):  
M Azarnoosh ◽  
H Doostdar

Background: The importance of continuous monitoring along with rapid and accurate notification of changes in blood components such as hemoglobin concentration, especially in acute situations, encourages researchers to use non-invasive methods for measuring.Objective: This study was aimed to investigate the correlation between hemoglobin concentration and photoplethysmogram (PPG) and the possibility of measuring it by an optical method.Material and Methods: In this applied study, a PPG signal was simultaneously recorded at four different wavelengths for thirty subjects who were referred to the laboratory for a hemoglobin concentration test. After calibrating the special recording probe with a standard pulse oximeter system and applying the required preprocessing on the obtained signals, the peak-to-peak value of PPG signals was extracted. Finally, the correlation between the peak-to-peak value of the signal at a certain wavelength and hemoglobin concentration was analyzed using Spearman and Pearson correlation for determining the process of changes in the data.Results: The results demonstrated that based on the normal distribution of data at 590 nm wavelength, there is a significantly negative correlation between a function of the signal peak slope and the hemoglobin concentration, with a Pearson coefficient of -0.787 (p<0.01). In addition, the investigation of rank correlation indicated a significantly negative correlation of -0.842 (p<0.01) using Spearman correlation analysis.Conclusion: Considering the high correlation between hemoglobin concentration and PPG signal characteristics, optical methods can be used to develop a rapid, precise, clean and inexpensive method to measure hemoglobin concentration.


2021 ◽  
Author(s):  
Matthew E Lee ◽  
Yung Chang ◽  
Navid Ahmadinejad ◽  
Crista E Johnson-Agbakwu ◽  
Celeste Bailey ◽  
...  

Background: COVID-19 poses a life-threatening endangerment to individuals with chronic diseases. However, not all comorbidities affect COVID-19 prognosis equally. Some increase the risk of COVID-19 related death by more than six folds while others show little to no impact. To prevent severe outcomes, it is critical that we comprehend pre-existing molecular abnormalities in common health conditions that predispose patients to poor prognoses. In this study, we aim to discover some of these molecular risk factors by associating gene expression dysregulations in common health conditions with COVID-19 mortality rates in different cohorts. Methods: We focused on fourteen pre-existing health conditions, for which age-and-sex-adjusted hazard ratios of COVID-19 mortality have been documented. For each health condition, we analyzed existing transcriptomics data to identify differentially expressed genes (DEGs) between affected individuals and unaffected individuals. We then tested if fold changes of any DEG in these pre-existing conditions were correlated with hazard ratios of COVID-19 mortality to discover molecular risk factors. We performed gene set enrichment analysis to identify functional groups overrepresented in these risk factor genes and examined their relationships with the COVID-19 disease pathway. Results: We found that upregulated expression of 70 genes and downregulated expression of 181 genes in pre-existing health conditions were correlated with increased risk of COVID-19 related death. These genes were significantly enriched with endoplasmic reticulum (ER) function, proinflammatory reaction, and interferon production that participate in viral transcription and immune responses to viral infections. Conclusions: Impaired innate immunity in pre-existing health conditions are associated with increased hazard of COVID-19 mortality. The discovered molecular risk factors are potential prognostic biomarkers and targets for therapeutic interventions.


2012 ◽  
pp. 1255-1292
Author(s):  
J. P. Carmo ◽  
N. S. Dias ◽  
J. H. Correia

This chapter introduces the concept of wireless interface, followed by the discussion of the fundamental items, concerning the fabrication of microsystems comprising low-power devices. Using as example, a design of a RF transceiver the frequency of 2.4 GHz and fabricated using a UMC RF CMOS 0.18 µm process, it will be discussed the main issues in the design of RF transceivers for integration in wireless microsystems. Then, it will be presented two biomedical applications for wireless microsystems: the first is a wireless EEG acquisition system, where it is presented the concept of EEG electrode and the characterisation of iridium oxide electrodes. The other application, is a wireless electronic shirt to monitoring the cardio-respiratory function. The main goal of these applications, is to improve the medical diagnostics and therapy by using devices which reduces healthcare costs and facilitates the diagnostic while at the same time preserving the mobility and lifestyle of patients.


Author(s):  
J. P. Carmo ◽  
N. S. Dias ◽  
J. H. Correia

This chapter introduces the concept of wireless interface, followed by the discussion of the fundamental items, concerning the fabrication of microsystems comprising low-power devices. Using as example, a design of a RF transceiver the frequency of 2.4 GHz and fabricated using a UMC RF CMOS 0.18 µm process, it will be discussed the main issues in the design of RF transceivers for integration in wireless microsystems. Then, it will be presented two biomedical applications for wireless microsystems: the first is a wireless EEG acquisition system, where it is presented the concept of EEG electrode and the characterisation of iridium oxide electrodes. The other application, is a wireless electronic shirt to monitoring the cardio-respiratory function. The main goal of these applications, is to improve the medical diagnostics and therapy by using devices which reduces healthcare costs and facilitates the diagnostic while at the same time preserving the mobility and lifestyle of patients.


2022 ◽  
pp. 289-311
Author(s):  
Raghavv Raghavender Suresh ◽  
Shruthee Sankarlinkam ◽  
Sai Rakshana Karuppusami ◽  
Niraimathi Pandiyan ◽  
Suwetha Bharathirengan ◽  
...  

In recent years, there has been significant growth and burgeoning interest in utilizing nanoparticles for various biomedical applications, including medical diagnostics, targeted drug delivery, tissue engineering, regenerative medicine, and biomedical textiles. In particular, nanoparticles functionalized with biological molecules have unique properties and are very effective in medical diagnostics. Besides that, nanoparticles have a wide range of therapeutic applications, including the development of nanodrug delivery systems, the design of novel drugs, as well as their contribution to the design of therapeutic materials. This chapter provides an overview of recent advancements in the biomedical applications of nanoparticles. Finally, this chapter discusses the challenges of the toxicological evaluation of engineered nanoparticles and the importance of conducting detailed studies on the synthesis of future nanomaterials to develop cutting-edge technologies for addressing a wide range of biomedical issues.


Author(s):  
Venkat S. Kalambur ◽  
Ellen Longmire ◽  
John C. Bischof

Magnetic iron oxide nanoparticles (NPs) have intrinsic advantages over other NPs for various biomedical applications. These advantages include visualization under Magnetic Resonance Imaging (MRI), heating with Radiofrequency (RF), and movement in a magnetic field. There are now numerous efforts to expand the applications of these particles for non-invasive drug and adjuvant delivery, cellular imaging and in vitro cell sorting and purification. In the present study, we describe methods to (i) assess and quantify NP cell association (ii) facilitate NP heat destruction of cells after association with RF and laser. First, we show that (i) the cell association of iron oxide NPs is dependent on the surface coating (surfactant greater than dextran), time, cell-type and extracellular NP concentrations (saturation with concentration and time). Furthermore, the association fits a simple enzyme Michealis-Menten model. Second, (ii) improved heat destruction of cells can be achieved after laser irradiation compared to traditional RF treatment for similar NP associations. These results and assays show promise for cell sorting and purification applications.


Sign in / Sign up

Export Citation Format

Share Document