Integrated water management in former coal mining regions (INWATCO)

2021 ◽  
pp. 231-241
Author(s):  
S.M. Foster
2007 ◽  
Vol 7 (1) ◽  
pp. 261-267
Author(s):  
J.L. De la Peña ◽  
M. De la Peña ◽  
M. Salgot ◽  
Ll. Torcal

The history and water-related features in the Poblet Cistercian Monastery, located in Tarragona province, Spain are described. The study is undertaken with the main purpose of obtaining data for the establishment of an integrated water management system inside the walls of the abbey, which is suffering water scarcity due to increasing demands and the prevalent semiarid conditions.


1995 ◽  
Vol 31 (8) ◽  
pp. 393-400 ◽  
Author(s):  
Joost de Jong ◽  
Peter T. J. C. van Rooy ◽  
S. Harry Hosper

Until the last two decades, the global perception of how to control our various water bodies was remarkably similar – water management was organised on a sectoral basis, as it always had been. It was only in the 1970s that the people actually responsible for implementing water management began to become aware of the serious implications of such an approach: water quality deterioration, desiccation and an alarming loss of the flora and fauna that characterised their local water environment. It was a growing awareness that led to the formation of the concept of integrated water management, a concept almost universally accepted today as the way forward. However, despite the fact that few dispute the validity of the concept, a number of obstacles remain before this theoretical agreement can be transformed into practical action. Three main bottlenecks stand in the way of implementation: institutional, communicational and socio-political. Whilst solutions to these are available, the key question still to be answered is whether society is really prepared to accept the consequent changes in the way we live that will result from putting the theory of integrated water management into practice. It was this issue that dominated the “Living with water” conference held in Amsterdam in September 1994. The following is a summary of the discussions held there and the various papers that were submitted.


1995 ◽  
Vol 31 (8) ◽  
pp. 301-309 ◽  
Author(s):  
Govert D. Geldof

In integrated water management, the issues are often complex by nature, they are capable of subjective interpretation, are difficult to express in standards and exhibit many uncertainties. For such issues, an equilibrium approach is not appropriate. A non-equilibrium approach has to be applied. This implies that the processes to which the integrated issue pertains, are regarded as “alive”’. Instead of applying a control system as the model for tackling the issue, a network is used as the model. In this network, several “agents”’ are involved in the modification, revision and rearrangement of structures. It is therefore an on-going renewal process (perpetual novelty). In the planning process for the development of a groundwater policy for the municipality of Amsterdam, a non-equilibrium approach was adopted. In order to do justice to the integrated character of groundwater management, an approach was taken, containing the following features: (1) working from global to detailed, (2) taking account of the history of the system, (3) giving attention to communication, (4) building flexibility into the establishing of standards, and (5) combining reason and emotions. A middle course was sought, between static, rigid but reliable on the one hand; dynamic, flexible but vague on the other hand.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 265-269
Author(s):  
Govert D. Geldof

In the practice of integrated water management we meet complexity, subjectivity and uncertainties. Uncertainties come into play when new urban water management techniques are applied. The art of a good design is not to reduce uncertainties as much as possible, but to find the middle course between cowardice and recklessness. This golden mean represents bravery. An interdisciplinary approach is needed to reach consensus. Calculating uncertainties by using Monte Carlo simulation results may be helpful.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2148
Author(s):  
Jonathan A. Lafond ◽  
Silvio J. Gumiere ◽  
Virginie Vanlandeghem ◽  
Jacques Gallichand ◽  
Alain N. Rousseau ◽  
...  

Integrated water management has become a priority for cropping systems where subirrigation is possible. Compared to conventional sprinkler irrigation, the controlling water table can lead to a substantial increase in yield and water use efficiency with less pumping energy requirements. Knowing the spatiotemporal distribution of water table depth (WTD) and soil properties should help perform intelligent, integrated water management. Observation wells were installed in cranberry fields with different water management systems: Bottom, with good drainage and controlled WTD management; Surface, with good drainage and sprinkler irrigation management; Natural, without drainage, or with imperfectly drained and conventional sprinkler irrigation. During the 2017–2020 growing seasons, WTD was monitored on an hourly basis, while precipitation was measured at each site. Multi-frequential periodogram analysis revealed a dominant periodic component of 40 days each year in WTD fluctuations for the Bottom and Surface systems; for the Natural system, periodicity was heterogeneous and ranged from 2 to 6 weeks. Temporal cross correlations with precipitation show that for almost all the sites, there is a 3 to 9 h lag before WTD rises; one exception is a subirrigation site. These results indicate that automatic water table management based on continuously updated knowledge could contribute to integrated water management systems, by using precipitation-based models to predict WTD.


Sign in / Sign up

Export Citation Format

Share Document