Influence of heterogeneity on crack propagation mode in brittle rock under static load

Author(s):  
C.A. Tang ◽  
W.C. Zhu ◽  
T.H. Yang ◽  
Z.Z. Liang ◽  
H.P. Xie ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1566
Author(s):  
Anastasiya Dolzhenko ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

The microstructural mechanisms providing delamination toughness in high-strength low-alloyed steels are briefly reviewed. Thermo-mechanical processing methods improving both the strength and impact toughness are described, with a close relation to the microstructures and textures developed. The effect of processing conditions on the microstructure evolution in steels with different carbon content is discussed. Particular attention is paid to tempforming treatment, which has been recently introduced as a promising processing method for high-strength low-alloyed steel semi-products with beneficial combination of strength and impact toughness. Tempforming consists of large strain warm rolling following tempering. In contrast to ausforming, the steels subjected to tempforming may exhibit an unusual increase in the impact toughness with a decrease in test temperature below room temperature. This phenomenon is attributed to the notch blunting owing to easy splitting (delamination) crosswise to the principle crack propagation. The relationships between the crack propagation mode, the delamination fracture, and the load-displacement curve are presented and discussed. Further perspectives of tempforming applications and promising research directions are outlined.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xizhen Sun ◽  
Fanbao Meng ◽  
Ce Zhang ◽  
Xucai Zhan ◽  
He Jiang

The geometric distribution of initial damages has a great influence on the strength and progressive failure characteristics of the fractured rock mass. Initial damages of the fractured rock were simplified as parallel cracks in different geometric distributions, and then, the progressive failure and acoustic emission (AE) characteristics of specimens under the uniaxial compression loading were analyzed. The red sandstone (brittle materials) specimens with the parallel preexisting cracks by water jet were used in the tests. The energy peak and stress attenuation induced by the energy release of crack initiation were intuitively observed in the test process. Besides, three modes of rock bridge coalescence were obtained, and wing crack was the main crack propagation mode. The wing crack and other cracks were initiated in different loading stages, which were closely related to the energy level of crack initiation. The propagation of wing crack (stable crack) consumed a large amount of energy, and then, the propagation of shear crack, secondary crack, and anti-wing crack (unstable crack) was inhibited. The relationship between the crack propagation mode and the geometric distribution of existing cracks in the specimen was revealed. Meanwhile, the strength characteristic and failure mode of fractured rock with the different geometric distributions of preexisting crack were also investigated. The energy evolution characteristics and crack propagation were also analyzed by numerical modeling (PFC2D).


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4430 ◽  
Author(s):  
Jingming Zhu ◽  
Jun Luo ◽  
Yuanzun Sun

The superior fracture toughness of zirconia is closely correlated with stress-induced martensitic phase transformation around a crack tip. In this study, a modified phase field (PF) model coupling phase transformation and fracture is proposed to study the fracture behavior and toughening effect of tetragonal zirconia polycrystal (TZP). The stress-induced tetragonal to monoclinic (t–m) phase transformation around a static or propagating crack is characterized with PF simulations. It is shown that the finite size and shape of the transformation zone under different loads and ambient temperatures can be well predicted with the proposed PF model. The phase transformation may decrease the stress level around the crack tip, which implies the toughening effect. After that, crack propagation in TZP is studied. As the stress field is perturbed by the phase transformation patterns, the crack may experience deflection and branching in the propagation process. It is found that the toughness of the grain boundaries (GBs) has important influences on the crack propagation mode. For TZP with strong GBs, the crack is more likely to propagate transgranularly while, for TZP with weak GBs, intergranular crack propagation is prevalent. Besides that, the crystal orientation and the external load can also influence the topology of crack propagation.


2020 ◽  
Vol 106 ◽  
pp. 102438 ◽  
Author(s):  
Yanan Zhang ◽  
Hongwei Deng ◽  
Junren Deng ◽  
Chuanju Liu ◽  
Songtao Yu

2018 ◽  
Vol 116 ◽  
pp. 36-47 ◽  
Author(s):  
Shigeru Hamada ◽  
Kejin Zhang ◽  
Jiwang Zhang ◽  
Motomichi Koyama ◽  
Tatsuo Yokoi ◽  
...  

2015 ◽  
Vol 187 ◽  
pp. 113-121 ◽  
Author(s):  
Ping Cao ◽  
Taoying Liu ◽  
Chengzhi Pu ◽  
Hang Lin

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nai-Zhong Xu ◽  
Chang-Qing Liu ◽  
You-Jian Wang ◽  
Hong-Bin Dang

A biaxial shear test is performed on prefabricated, single-fissure type, cubic rock-like specimens by using the TZW-500 rock direct shear apparatus to study the shear strength characteristics, crack coalescence, and propagation modes of the specimens with different geometric parameters. Results show that the crack coalescence and propagation modes of the rock-like specimens with prefabricated fissures can be divided into four types, namely, single main shear crack coalescence mode, main shear crack coalescence and secondary tensile-shear crack propagation mode, main shear crack coalescence and secondary shear crack propagation mode, and main shear crack coalescence and secondary tensile crack propagation mode. All modes are affected by the dip angle α and length l of the prefabricated fissure. When the dip angle of the prefabricated fissure is α∈[0°, 20°) or (70°, 90°], the cracks center on shear failure, and most shear cracks propagate along one end of the prefabricated fissure. At α∈(30°, 50°), the cracks bear the tensile-shear combined action, and the shear cracks propagate along the two ends of the prefabricated fissure. The peak shear strength of the rock-like specimens with prefabricated fissures is also closely related to the dip angle α and length l of the fissure. With the increase in dip angle α of the prefabricated fissure, the peak shear strength of each rock-like specimen decreases initially then increases, and the peak shear strength curve presents a similar “U” shape. At α∈[30°, 60°], the peak shear strength is within the peak-valley interval. When the length l of the prefabricated fissure is increased, the peak shear strength experiences a gradual reduction. When l > 20 mm, the peak shear strength is greatly influenced by l, but the influence is minimal when l ≥ 20 mm. At the same dip angle α and fissure length of l ≥ 20 mm, the correlation between peak shear strength and fissure width b is low.


Sign in / Sign up

Export Citation Format

Share Document