Deep representation learning-based vessel trajectory clustering for situation awareness in ship navigation

Author(s):  
Brian Murray ◽  
Lokukaluge Prasad Perera
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Evelin Engler ◽  
Michael Baldauf ◽  
Paweł Banyś ◽  
Frank Heymann ◽  
Maciej Gucma ◽  
...  

This paper discusses the application of resilience engineering principles by shipborne navigation systems. As a technological system, the ship navigation system comprises all the communication and navigation equipment required to operate a ship. If examined as a socio-technological system, one has to additionally consider the use of the ship navigation system by the bridge teams in order to perform the nautical profession in terms of safe and efficient ship navigation, taking into account environmental information received by communication. The first part of this work discusses the theoretical background of resilience engineering and situation awareness. Case studies are used to illustrate under which conditions the application of resilience principles may result in an improvement of the operational reliability. With the help of simulations, it is shown that a sub-optimal implementation and utilization of resilience principles may decrease the robustness of the technical ship navigation system, as well as the reliability and adaptability of the ship navigation system in use. The examples illustrate once again that monitoring is one of the four cornerstones of resilience: anticipating, monitoring, learning, and responding. This is due to the effectiveness of most resilience principles depending on the availability and trustworthiness of situational information in relation to system status and environmental conditions, irrespective of whether the generation and use of the situational information is machine-made or human-made. Therefore, the establishment of situation awareness is an essential accompanying functionality to be considered in design, operation, and use of resilient systems.


Author(s):  
Lokukaluge P. Perera ◽  
Brian Murray

Abstract Autonomous ship navigation in a mixed environment, where remote-controlled, autonomous and manned vessels are interacting, is considered. Since these vessels can have various encounter situations, adequate knowledge on such situations should be acquired to take appropriate navigation actions. That has often been categorized as situation awareness in a mixed environment, where appropriate tools and techniques to extract the respective knowledge on ship encounter situations should be developed. The collision risk assessment procedure has an important role in the same knowledge and that can eventually be used towards the respective collision avoidance actions. Hence, possible ship collision and near-miss situations can be avoided by both humans as well as systems due to their actions. Ship collision avoidance actions are regulated by the International Regulations for Preventing Collisions at Sea 1972 (COLREGs) in open sea areas and additional local navigation rules and regulations can also enforce especially in confined waters and maritime traffic lanes. It is expected that the COLREGs and other navigation rules and regulations will be interpreted by both humans as well as systems in future vessels and those interpretations will be executed as collision avoidance actions by the respective vessels in a mixed environment. Adequate understanding on situation awareness should be achieved to overcome possible regulatory failure due to human and system decisions in these situations. Hence, this study focuses on identifying such challenges in future ship encounters with possible solutions to improve situation awareness in a mixed environment as the main contribution.


2004 ◽  
Author(s):  
Parsa Mirhaji ◽  
S. Lillibridge ◽  
R. Richesson ◽  
J. Zhang ◽  
J. Smith

2004 ◽  
Author(s):  
Cheryl A. Bolstad ◽  
◽  
Cleotilde Gonzalez ◽  
John Graham

Sign in / Sign up

Export Citation Format

Share Document