Development of a tire-pavement friction model incorporating the water effect

2021 ◽  
pp. 675-680
Author(s):  
J.W. Cai ◽  
H. Zhao ◽  
X Qian ◽  
Z. Du ◽  
L. Zhao
Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 538
Author(s):  
Malal Kane ◽  
Ebrahim Riahi ◽  
Minh-Tan Do

This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted.


Author(s):  
Mohammad Al-Assi ◽  
Emad Kassem ◽  
Richard Nielsen

Pavement friction measurements are collected and used to assess the functional characteristics of pavements to ensure an adequate level of friction. There are several factors that affect pavement friction including the properties of the tire rubber materials and pavement surface texture characteristics. This study utilized the close-range photogrammetry (CRP) technique to measure the pavement macrotexture and microtexture. Texture parameters were calculated from the collected and analyzed images of the pavement surface. The results of the CRP texture measurements were compared with typical measurement methods. The CRP texture measurements had excellent correlation with the measurement methods used in this study; however, the CRP offers a simple and accurate, yet inexpensive, alternative to the current methods used to measure surface macrotexture and microtexture. In addition, the CRP texture parameters were incorporated in the Persson friction model to predict skid friction as a function of rubber properties. The results demonstrated an excellent correlation between measured and predicted friction. This study greatly simplified the texture parameter calculations needed in the Persson friction model with good accuracy.


Author(s):  
Ahmad Alhasan ◽  
Omar Smadi ◽  
Georges Bou-Saab ◽  
Nacu Hernandez ◽  
Eric Cochran

Pavement frictional behavior affects pavement performance in terms of vehicle safety, fuel consumption, and tire wear. Comprehending and interpreting pavement friction measurements is a challenging task, because of friction sensitivity to several uncontrollable factors. These factors include: pavement surface conditions, such as the type and thickness of contaminants and fluids on the surface and their interaction with friction forces; and the device operating conditions, such as sliding speed, material properties and geometry of the rubber slider used, and operating temperature. Despite the efforts to describe and quantify the impact of varying conditions on pavement friction, which ultimately will allow for a better harmonization of friction measurements, there is a need to better understand the link between the surface texture and physical friction measurements. In this paper, Persson’s friction model is used to analyze and understand the impact of surface texture on frictional behavior of dry pavement surfaces. The model was used to analyze 18 test locations, which were compared with the dry kinetic coefficients of friction (COF) estimated using a British pendulum tester (BPT). The results show that Persson’s friction model could predict the COF estimated from the BPT results with relatively high accuracy. In addition, the model could provide a profound explanation of the frictional forces mechanism. Finally, it was found that the mean profile depth (MPD) cannot provide a full picture of the frictional behavior. However, combining MPD with the Hurst exponent, texture measurements can potentially provide a full physical explanation of the frictional behavior for road surfaces.


2010 ◽  
Vol 38 (3) ◽  
pp. 213-227 ◽  
Author(s):  
M. P. Rajapakshe ◽  
M. Gunaratne ◽  
A. K. Kaw

Abstract Accurate modeling of tire/pavement friction phenomena is of utmost importance in many applications such as vehicle braking control and frictional evaluation of pavements. LuGre tire friction model is a model which is used for this purpose by estimating its parameters using measured pavement friction data. In this investigation, LuGre model parameters were estimated using field data collected by a standard pavement friction measuring device (Locked Wheel Skid Trailer-ASTM E 274) at a group of pavements with different surface friction properties. Adequacy of the model to predict measured friction data from the device was statistically evaluated and the accuracy of estimated model parameters was determined. The results show the potential of this model to facilitate frictional evaluation of pavements using dynamic friction measuring equipment.


2016 ◽  
Vol 44 (3) ◽  
pp. 150-173 ◽  
Author(s):  
Mehran Motamedi ◽  
Saied Taheri ◽  
Corina Sandu

ABSTRACT For tire designers, rubber friction is a topic of pronounced practical importance. Thus, development of a rubber–road contact model is of great interest. In this research, to predict the effectiveness of the tread compound in a tire as it interacts with the pavement, the physics-based multiscale rubber-friction theories developed by B. Persson and M. Klüppel were studied. The strengths of each method were identified and incorporated into a consolidated model that is more comprehensive and proficient than any single, existing, physics-based approach. In the present work, the friction coefficient was estimated for a summer tire tread compound sliding on sandpaper. The inputs to the model were the fractal properties of the rough surface and the dynamic viscoelastic modulus of rubber. The sandpaper-surface profile was measured accurately using an optical profilometer. Two-dimensional parameterization was performed using one-dimensional profile measurements. The tire tread compound was characterized via dynamic mechanical analysis. To validate the friction model, a laboratory-based, rubber-friction test that could measure the friction between a rubber sample and any arbitrary rough surface was designed and built. The apparatus consisted of a turntable, which can have the surface characteristics of choice, and a rubber wheel in contact with the turntable. The wheel speed, as well as the turntable speed, could be controlled precisely to generate the arbitrary values of longitudinal slip at which the dynamic coefficient of friction was measured. The correlation between the simulation and the experimental results was investigated.


2012 ◽  
Vol 40 (2) ◽  
pp. 83-107 ◽  
Author(s):  
Zhao Li ◽  
Ziran R. Li ◽  
Yuanming M. Xia

ABSTRACT A detailed tire-rolling model (185/75R14), using the implicit to explicit FEA solving strategy, was constructed to provide a reliable, dynamic simulation with several modeling features, including mesh, material modeling, and a solving strategy that could contribute to the consideration of the serious numerical noises. High-quality hexahedral meshes of tread blocks were obtained with a combined mapping method. The actual rubber distributing and nonlinear, stress-strain relationship of the rubber and bilinear elastic reinforcement were modeled for realism. In addition, a tread-rubber friction model obtained from the Laboratory Abrasion and Skid Tester (LAT 100) was applied to simulate the interaction of the tire with the road. The force and moment (F&) behaviors of tire cornering when subjected to a slip-angle sweep of −10 to 10° were studied with that model. To demonstrate the efficiency of the proposed simulation, the computed F&M were compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering F&M agreed well with the experimental results, so the footprint shape and contact pressure distribution of several cornering conditions were investigated. Furthermore, the longitudinal forces in response to braking/driving torque application in a slip-ratio range of −100% to 100% were computed. The proposed FEA solution confines the numerical noise within a smaller range and can serve as a valid tool in tire design.


1986 ◽  
Vol 14 (1) ◽  
pp. 44-72 ◽  
Author(s):  
C. M. Mc C. Ettles

Abstract It is proposed that tire-pavement friction is controlled by thermal rather than by hysteresis and viscoelastic effects. A numerical model of heating effects in sliding is described in which the friction coefficient emerges as a dependent variable. The overall results of the model can be expressed in a closed form using Blok's flash temperature theory. This allows the factors controlling rubber friction to be recognized directly. The model can be applied in quantitative form to metal-polymer-ice contacts. Several examples of correlation are given. The difficulties of characterizing the contact conditions in tire-pavement friction reduce the model to qualitative form. Each of the governing parameters is examined in detail. The attainment of higher friction by small, discrete particles of aluminum filler is discussed.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


Sign in / Sign up

Export Citation Format

Share Document