An Integrated Natural System for Leachate Treatment

Author(s):  
Joseph Loer ◽  
Katrin Scholz-Barth ◽  
Robert Kadlec ◽  
Douglas Wetzstein ◽  
Joseph Julik
2012 ◽  
Vol 11 (12) ◽  
pp. 2319-2331 ◽  
Author(s):  
Maria Gavrilescu ◽  
Ana-Maria Schiopu ◽  
George Ciprian Piuleac ◽  
Corneliu Cojocaru ◽  
Ion Apostol ◽  
...  

1999 ◽  
Vol 40 (8) ◽  
pp. 145-151 ◽  
Author(s):  
Liliana Borzacconi ◽  
Gisela Ottonello ◽  
Elena Castelló ◽  
Heber Pelaez ◽  
Augusto Gazzola ◽  
...  

The performance of a bench scale upflow sludge bed (USB) denitrifying reactor was evaluated in order to integrate it into a C and N removal system for Sanitary Landfill Leachate. The raw leachate used presented COD and NH4-N average values of 30000 mg/l and 1000 mg/l, respectively. The complete system comprises in addition an UASB reactor and a nitrifying RBC. A portion of the aerobic reactor effluent was recycled into the denitrification stage and some raw leachate was also added as an additional C source. In order to obtain operating parameters the denitrifying reactor was operated alone. Sludge from an aerobic reactor (RBC) treating raw leachate was used as inoculum. Shortly after the start up, good granulation of the sludge bed was observed. Using raw leachate and UASB outlet as carbon sources with COD/NO3-N ratios of 4 and 12, respectively, denitrification efficiencies of about 90% were reached. A sludge yield of 0.16 gVSS/gCODremoved was obtained operating with raw leachate. For the anoxic reactor operating in the complete system, denitrification efficiencies of 90% were also achieved. A nitrogen gas recycle was a successful way to avoid frequently observed sludge bed rising problems.


2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2021 ◽  
Vol 13 (3) ◽  
pp. 1498
Author(s):  
Jian Zhang ◽  
Tao Tian ◽  
Jinying Cui ◽  
Gordon M. Hickey ◽  
Rui Zhou ◽  
...  

Most previous studies aim to predict ecosystem sustainability from the perspective of a sole human or natural system and have frequently failed to achieve their desired outcome. Based on the coupled human and natural system (CHANS) and its interaction with other systems, we attempted to analyze the effectiveness of the Grain to Green Program and predict future trends in the Hexi Corridor, the hub of the ancient silk road of China. At different scales, we applied a metacoupling framework to investigate the flows, effects, and causes of the complex CHANS. Three typical inner river watersheds within the corridor at three different geographic scales (local, regional and national) were estimated and compared. The Telecoupling Geo App, additional models, and software tools were employed to evaluate the CHANS series of the focal system (Hexi Corridor, local), adjacent system (Gansu Province, regional), and distant system (China, national). The results showed that most flows can be screened and quantitatively analyzed across focal, adjacent and distant systems. The social and economic transformations in adjacent and distant systems could affect the possibility and whereabouts of labor transfer in the focal system. Moreover, the labor migration increased the implementation efficiency of the Grain to Green Program as a Payment for Ecosystem Services (PES) strategy, thereby improving its ecological benefits. For the first time, we established a metacoupled model to quantitatively evaluate aspects of ecosystem sustainability in China, providing insight to the theory and application of sustainability science.


Sign in / Sign up

Export Citation Format

Share Document