REDUCING ENVIRONMENTAL RISK OF LANDFILLS: LEACHATE TREATMENT BY REVERSE OSMOSIS

2012 ◽  
Vol 11 (12) ◽  
pp. 2319-2331 ◽  
Author(s):  
Maria Gavrilescu ◽  
Ana-Maria Schiopu ◽  
George Ciprian Piuleac ◽  
Corneliu Cojocaru ◽  
Ion Apostol ◽  
...  
1996 ◽  
Vol 34 (7-8) ◽  
pp. 445-453 ◽  
Author(s):  
G. Baumgarten ◽  
C. F. Seyfried

The leachate treatment plant of the landfill in Mechernich including biological pretreatment, reverse osmosis and evaporation and drying of the concentrate has been in operation since the beginning of 1994. Originally the plant was designed for a capacity of 130 m3/d. In the future, an average leachate amount of ca. 280 m3/d and even considerably higher montly peaks must be assumed. The necessary enlargement of the biological pretreatment will be realized by a second biological contactor plant. Corresponding to the operation of the existing plant a large amount of the ammonium can be eliminated under aerobic conditions by deammonification so no enlargement of the denitrification stage is needed. by simply replacing the reverse osmosis membranes by nanofiltration membranes, an operational capacity of ca. 280 m3/d may easily be achieved at the existing physical post-treatment stage. With the aid of this enlargement conception, the relatively high operational costs at present will be reduced considerably.


2003 ◽  
Vol 81 (3) ◽  
pp. 223-246 ◽  
Author(s):  
B.M Jenkins ◽  
J.D Mannapperuma ◽  
R.R Bakker

Author(s):  
A. G. Pervov ◽  
T. N. Shirkova

Results of investigations are presented that were aimed at production of quality water that meets regulations for surface water sources discharge. All impurities rejected by reverse osmosis membranes that are contained in concentrate stream can be withdrawn together with the dewatered sludge. Experimental research is conducted to develop membrane operational modes during leachate treatment. Experimental procedure is described to evaluate reduction of membrane flux and rejection during leachate treatment and recovery increase. Results of investigations are presented that enable us to determine main characteristics of membrane process such as: membrane flux, ammonia rejection, membrane types required, number of stages, recovery values. Experimental relationships are developed to determine the required membrane recovery values that correspond to ammonia concentration in the feed water to meet required regulation values in the product water. Tools to evaluate the required membrane area and required amount of membrane modules are developed and described. Influence of organics defined as COD (chemical oxygen demand) on membrane performance is investigated. Optimum values of working pressure are evaluated as well as economical parameters of membrane process are determined. Main tools to handle concentrate streams of membrane facilities and to withdraw it with dewatered sludge as well as methods to utilize sludge and concentrate are discussed.


2020 ◽  
Vol 38 (10) ◽  
pp. 1087-1092
Author(s):  
Ronei de Almeida ◽  
Daniele Maia Bila ◽  
Bianca Ramalho Quintaes ◽  
Juacyara Carbonelli Campos

The reverse osmosis (RO) process has been increasingly applied to landfill leachate treatment. The published literature reports several studies that investigated the technical feasibility of RO. However, information about process costs is scarce. Also, companies that run leachate treatment plants do not provide actual costs. To fill this gap, this study aimed to evaluate the treatment costs of a full-scale RO for the treatment of landfill leachate located in Rio de Janeiro State, Brazil. A procedure was proposed to estimate the capital expenses (CAPEX), operational expenses (OPEX), and specific total treatment cost, the total cost per m3 of treated leachate, of the leachate treatment by membrane process, and the results obtained are discussed. The CAPEX for this full-scale RO was estimated at MUS$ 1.413, and OPEX ranged from US$ 0.132 to US$ 0.265 m−3 per year. The cost of leachate treatment has been estimated at US$ 8.58 m−3 considering the operation of the RO-unit for 20 years after landfill closure.


2003 ◽  
Vol 48 (3) ◽  
pp. 127-134 ◽  
Author(s):  
T. Wintgens ◽  
M. Gallenkemper ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. Industrial chemicals with estrogenic effects were detected in large quantities in landfill leachates. Membrane technology has proven to be an effective barrier to these substances and thus widely applied in the treatment of landfill leachate. The removal techniques under investigation are membrane bioreactors, nanofiltration, activated carbon adsorption, ozonation as well as reverse osmosis. Investigations were conducted at two different landfill leachate treatment plants with a variety of process configurations. The xenoestrogenic substances nonylphenol and bisphenol A were detected in high μg/L-ranges in raw landfill leachate. Membrane bioreactors (MBRs) were capable of removing more than 80% of the nonylphenol load. Final effluent concentrations range between 1-12 μg/L nonylphenol and 3-30 μg/L bisphenol A respectively. Reverse osmosis treatment proved to be less effective in nonylphenol and bisphenol A removal than MBRs with further polishing stages like nanofiltration and activated carbon adsorption.


Author(s):  
Izabela Anna Tałałaj

Abstract Purpose In this paper the performance and effectiveness of the reverse osmosis (RO) process for the biologically pretreated leachate was investigated. The RO process was carried out separately for two different pH: 8.0 and 9.3. Methods A general pollution parameters as well as organic and inorganic indicators were determined in raw, biologically pretreated and RO treated leachate. The performance characteristics of the reverse osmosis system were made on the basis of permeate flux, electroconductivity removal rate, concentration factor and efficiency in removal of analyzed parameters. Results The use of SBR pretreatment had very good efficiency in BOD (97.3%) and ammonia nitrogen (95.4%) removal. The lowest effectivity was observed for chloride (11.6%), boron (3.9%) and TDS (1.2%). Pretreated leachate was subjected to RO system. The normalized average flux was 0.53 (42.3 L/m2·h) for pH = 8.0 and 0.68 (33.5 L/m2·h) for pH = 9.3. The lower membrane fouling at higher pH can be explained by electrostatic repulsion between the negatively charged membrane surface and organic substances. Independently of the process pH, a two-step membrane fouling was observed. The greatest differences in removal rates were observed for boron, which had a higher retention rate at higher pH, and ammonia nitrogen, whose removal rate decreased at higher pH. The obtained permeate pH after RO process was lower than the feed pH in two analyzed value of pH. Conclusions The higher flux value at pH = 9.3 is result of high content of organic matter in leachate, which is better rejected at higher pH because of higher electrostatic repulsion between organic matter and membrane surface. This indicates that the organic matter content should be taken into account when determining the operating parameters (pH values) of the RO system.


2014 ◽  
Vol 71 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Weerapong Rukapan ◽  
Benyapa Khananthai ◽  
Thirdpong Srisukphun ◽  
Wilai Chiemchaisri ◽  
Chart Chiemchaisri

Fouling characteristics of reverse osmosis (RO) membrane with chemical coagulation and microfiltration (MF) pre-treatment were investigated at full-scale leachate treatment systems. In chemical coagulation pre-treatment, solid separation from stabilized leachate was performed by ferric chloride coagulation followed by sand filtration. Meanwhile, MF pre-treatment and the RO system utilized direct filtration using a 0.03 µm membrane without chemical addition. MF pre-treatment yielded better pollutant removals in terms of organics and nitrogen. The study on effect of pre-treatment on RO membrane fouling revealed that accumulated foulant on the RO membrane in MF pre-treatment was significantly lower than that of chemical coagulation. Nevertheless, NaOH cleaning of the fouled RO membrane after chemical coagulation pre-treatment could better recover its permeate flux, thus suggesting that the formation of a loose-structure cake layer by chemical coagulation pre-treatment could allow effective penetration of chemical cleaning and detachment of foulant layer from the membrane surface.


Sign in / Sign up

Export Citation Format

Share Document