New biaxial test method for the characterization of hyperelastic rubber-like materials

2017 ◽  
pp. 243-246 ◽  
Author(s):  
D.C. Pamplona ◽  
H.I. Weber ◽  
G.R. Sampaio ◽  
R. Velloso
Keyword(s):  
1985 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
KA Peters ◽  
S Gebremedhin, ◽  
RL Meltzer ◽  
MB Vieth ◽  
R Mott ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 448-454
Author(s):  
Rahmita Burhamzah ◽  
Gemini Alam ◽  
Herlina Rante

Background: Endophytic fungi live in plants’ tissue and can produce the same bioactive compounds as its host plant produces. Syzygiumpolyanthum leaves have known to be one of the antibacterial compound producers. Aim and Objective: This study aimed to characterize morphologically, microscopically, and molecularly the antibacterial-producing endophytic fungi of Syzygiumpolyanthum leaves. Methods: The isolation of endophytic fungi was done by fragment planting method on PDA medium. The antibacterial screening was performed using the antagonistic test as the first screening followed by the disc diffusion test method. The morphological characterization was based on isolate’s mycelia color, growth pattern, margin, and surface texture of the colony, while the microscopic characterization was based on its hyphae characteristics. The molecular characterization of the isolate was done by nitrogen base sequence analysis method on nucleotide constituent of ITS rDNA genes of the isolate. Results: The results found that isolate DF1 has antibacterial activity against E.coli, S.aureus, P.acne, and P.aeruginosa, with the greatest inhibition at 10% concentration of broth fermentation extract on S.aureus with a diameter of inhibition of 13.77 mm. Conclusion: Based on macroscopic, microscopic, and molecular characterization, DF1 isolate is similar to Ceriporialacerate.


Author(s):  
Ruiqiang Zhang ◽  
Zhusheng Shi ◽  
Zhutao Shao ◽  
Victoria A. Yardley ◽  
Jianguo Lin ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jan Hummel ◽  
Dietmar Göhlich ◽  
Roland Schmehl

Abstract. We have developed a tow test setup for the reproducible measurement of the dynamic properties of different types of tethered membrane wings. The test procedure is based on repeatable automated maneuvers with the entire kite system under realistic conditions. By measuring line forces and line angles, we determine the aerodynamic coefficients and lift-to-drag ratio as functions of the length ratio between power and steering lines. This nondimensional parameter characterizes the angle of attack of the wing and is varied automatically by the control unit on the towed test bench. During each towing run, several test cycles are executed such that mean values can be determined and errors can be minimized. We can conclude from this study that an objective measurement of specific dynamic properties of highly flexible membrane wings is feasible. The presented tow test method is suitable for quantitatively assessing and comparing different wing designs. The method represents an essential milestone for the development and characterization of tethered membrane wings as well as for the validation and improvement of simulation models. On the basis of this work, more complex maneuvers and a full degree of automation can be implemented in subsequent work. It can also be used for aerodynamic parameter identification.


2020 ◽  
Vol 133 ◽  
pp. 102838
Author(s):  
Sobhan Alah Nazari Tiji ◽  
Taejoon Park ◽  
Amir Asgharzadeh ◽  
Hyunki Kim ◽  
Madhura Athale ◽  
...  

Author(s):  
Jiantao Zheng ◽  
Suresh K. Sitaraman

Characterization of interfacial fracture parameters for nano-scale thin films continues to be challenging due to the difficulties associated with preparing samples, fixturing and loading the samples, and extracting and analyzing the experimental data. In this paper, we propose a stress-engineered superlayer test method that can be used to measure the interfacial fracture parameters of nano-scale (as well as micro-scale) thin films without the need for loading fixtures. The proposed test employs the residual stress in sputter-deposited metals to provide the energy for interfacial crack propagation. The innovative aspect of the test is the use of an etchable release layer that is deposited between the two interfacial materials of interest. The release layer is designed such that the available energy for interfacial crack propagation will continue to decrease as the crack propagates, and at the location where the crack ceases to propagate, the available energy for crack propagation will be the critical energy for crack propagation or the interfacial fracture toughness. The proposed test method has been successfully used to characterize Ti thin film on Si substrate.


2020 ◽  
Vol 54 (23) ◽  
pp. 3297-3312
Author(s):  
Caitlin M Arndt ◽  
Nelson V de Carvalho ◽  
Michael W Czabaj

Due to the observed dependence of transverse-tensile strength, Y T, on test geometry and specimen size, there is no consensus regarding a test method that can uniquely measure Y T. This study reexamines the characterization of Y T by comparing results from established flexure tests with results from a new tensile test that exhibits consistent failure in the gage region. Additionally, the effects of surface preparation and direction of transverse fracture are investigated. Results show that Y T is inversely proportional to specimen volume and surface roughness and is insensitive to direction of transverse fracture. The relationship between specimen volume and Y T is adequately captured by Weibull strength-scaling theory, except at the tails of the Y T distributions. However, specimens exhibited microcracking prior to failure, which violates the “weak-link” assumption of the Weibull theory. These findings highlight the challenges of using deterministic Y T values in progressive damage analysis.


Sign in / Sign up

Export Citation Format

Share Document