Liquid Metals as Heat Transfer Fluids for Science and Technology

2017 ◽  
pp. 305-376 ◽  
Author(s):  
Alexandru Onea ◽  
Sara Perez-Martin ◽  
Wadim Jäger ◽  
Wolfgang Hering ◽  
Robert Stieglitz
Author(s):  
Gopinath R. Warrier ◽  
Y. Sungtaek Ju ◽  
Jan Schroers ◽  
Mark Asta ◽  
Peter Hosemann

In response to the DOE Sunshot Initiative to develop low-cost, high efficiency CSP systems, UCLA is leading a multi-university research effort to develop new high temperature heat transfer fluids capable of stable operation at 800°C and above. Due to their operating temperature range, desirable heat transfer properties and very low vapor pressure, liquid metals were chosen as the heat transfer fluid. An overview of the ongoing research effort is presented. Development of new liquid metal coolants begins with identification of suitable candidate metals and their alloys. Initial selection of candidate metals was based on such parameters as melting temperature, cost, toxicity, stability/reactivity Combinatorial sputtering of the down selected candidate metals is used to fabricate large compositional spaces (∼ 800), which are then characterized using high-throughput techniques (e.g., X-ray diffraction). Massively parallel optical methods are used to determine melting temperatures. Thermochemical modeling is also performed concurrently to compliment the experimental efforts and identify candidate multicomponent alloy systems that best match the targeted properties. The modeling effort makes use of available thermodynamic databases, the computational thermodynamic CALPHAD framework and molecular-dynamics simulations of molten alloys. Refinement of available thermodynamics models are performed by comparison with available experimental data. Characterizing corrosion in structural materials such as steels, when using liquid metals, and strategies to mitigate them are an integral part of this study. The corrosion mitigation strategy we have adopted is based on the formation of stable oxide layers on the structural metal surface which prevents further corrosion. As such oxygen control is crucial in such liquid metal systems. Liquid metal enhanced creep and embrittlement in commonly used structural materials are also being investigated. Experiments with oxygen control are ongoing to evaluate what structural materials can be used with liquid metals. Characterization of the heat transfer during forced flow is another key component of the study. Both experiments and modeling efforts have been initiated. Key results from experiments and modeling performed over the last year are highlighted and discussed.


2015 ◽  
Vol 69 ◽  
pp. 644-653 ◽  
Author(s):  
A. Fritsch ◽  
J. Flesch ◽  
V. Geza ◽  
Cs. Singer ◽  
R. Uhlig ◽  
...  

2017 ◽  
Author(s):  
E. V. Firsova ◽  
M. E. Lebedev
Keyword(s):  

2021 ◽  
Vol 373 ◽  
pp. 111030
Author(s):  
Yaou Shen ◽  
Shinian Peng ◽  
Mingyu Yan ◽  
Yu Zhang ◽  
Jian Deng ◽  
...  

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


Solar Energy ◽  
2014 ◽  
Vol 105 ◽  
pp. 468-478 ◽  
Author(s):  
Dileep Singh ◽  
Elena V. Timofeeva ◽  
Michael R. Moravek ◽  
Sreeram Cingarapu ◽  
Wenhua Yu ◽  
...  

2013 ◽  
Vol 372 ◽  
pp. 143-148 ◽  
Author(s):  
Suhaib Umer Ilyas ◽  
Rajashekhar Pendyala ◽  
Narahari Marneni

Nanofluids are considered as promising heat transfer fluids due to enhanced heat transfer ability as compared to the base fluid alone. Knowledge of settling characteristics of nanofluids has great importance towards stability of nanosuspensions. Sedimentation behavior of Alumina nanoparticles due to gravity has been investigated using different proportions of ethanol-water binary mixtures. Nanoparticles of 40 nm and 50 nm are used in this investigation at 23°C. Sediment height with respect to time is measured by visualization method in batch sedimentation. The effect of sonication on the sedimentation behavior is also studied using ultrasonic agitator. The effect of particle diameter, nanoparticle concentration and ethanol-water proportion on sedimentation behavior of nanofluids has been investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document