Application of Electronic Noses and Tongues

Author(s):  
Anil Deisingh
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2298
Author(s):  
Pablo Cano Marchal ◽  
Chiara Sanmartin ◽  
Silvia Satorres Martínez ◽  
Juan Gómez Ortega ◽  
Fabio Mencarelli ◽  
...  

The organoleptic profile of a Virgin Olive Oil is a key quality parameter that is currently obtained by human sensory panels. The development of an instrumental technique capable of providing information about this profile quickly and online is of great interest. This work employed a general purpose e-nose, in lab conditions, to predict the level of fruity aroma and the presence of defects in Virgin Olive Oils. The raw data provided by the e-nose were used to extract a set of features that fed a regressor to predict the level of fruity aroma and a classifier to detect the presence of defects. The results obtained were a mean validation error of 0.5 units for the prediction of fruity aroma using lasso regression; and 88% accuracy for the defect detection using logistic regression. Finally, the identification of two out of ten specific sensors of the e-nose that can provide successful results paves the way to the design of low-cost specific electronic noses for this application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1686
Author(s):  
Ruohong Sui ◽  
Paul A. Charpentier ◽  
Robert A. Marriott

In the past two decades, we have learned a great deal about self-assembly of dendritic metal oxide structures, partially inspired by the nanostructures mimicking the aesthetic hierarchical structures of ferns and corals. The self-assembly process involves either anisotropic polycondensation or molecular recognition mechanisms. The major driving force for research in this field is due to the wide variety of applications in addition to the unique structures and properties of these dendritic nanostructures. Our purpose of this minireview is twofold: (1) to showcase what we have learned so far about how the self-assembly process occurs; and (2) to encourage people to use this type of material for drug delivery, renewable energy conversion and storage, biomaterials, and electronic noses.


2021 ◽  
Author(s):  
Yuvaraj Sivalingam ◽  
Gabriele Magna ◽  
Ramji Kalidoss ◽  
Sarathbavan Murugan ◽  
David Chidambaram ◽  
...  

Abstract The development of electronic noses requires the control of the selectivity pattern of each sensor of the array. Organic chemistry offers a manifold of possibilities to this regard but in many cases the chemical sensitivity is not matched with the response of electronic sensor. The combination of organic and inorganic materials is an approach to transfer the chemical sensitivities of the sensor to the measurable electronic signals. In this paper, this approach is demonstrated with a hybrid material made of phthalocyanines and a bilayer structure of ZnO and TiO2. Results show that the whole spectrum of sensitivity of phthalocyanines results in changes of the resistance of the sensor, and even the adsorption of compounds, such as hexane, which cannot change the resistance of pure phthalocyanine layers, elicits changes of the sensor resistance. Furthermore, since phthalocyanines are optically active, the sensitivity in dark and visible light are different. Thus, operating the sensor in dark and light two different signals per sensors can be extracted. As a consequence, an array of 3 sensors made of different phthalocyanines results in a virtual array of six sensors. The sensor array shows a remarkable selectivity respect to a set of test compounds. Principal component analysis scores plot illustrates that hydrogen bond basicity and dispersion interaction are the dominant mechanisms of interaction.


2017 ◽  
Vol 89 (10) ◽  
pp. 1587-1601 ◽  
Author(s):  
Tatyana Anatolievna Kuchmenko

AbstractOne of the topical approaches in analysis – outside the framework of traditional ones – is the formation of an integral “image” of the object. There are several approaches to solving the issue of obtaining as much information about the sample by a certain portion of its properties or its composition as possible. The first approach is forming a visual image (diagram) of several different properties of the analyzed sample, for example, the content of certain metals, acids, volatile components and some other indicators of wine quality. The consolidated image of a sample enables us to distinguish samples identical or similar in the selected properties from crucially different ones, even in case of an acceptable change of each indicator. Or else, using the consolidated image one can evaluate the direction of an image shift of a certain sample compared to the set of standard samples. The analysis of the geometry of the sample image by diverse indicators affords ground for assumption of the reasons for this deviation, as well as identification of falsification, or even solution of a more complicated task: detecting the area of growth of raw materials. The second approach is close to the first one in terms of methodology, but it digitizes properties using detectors and presents this as an image (“visual print” of response) of signals of these detectors on some components of the sample (presence, content). The feature of this approach is the use of a detector system that is non-selective and cross-sensitive to certain sample components. These sample images are produced using a system of “electronic nose”. “Visual prints” of array signals of different character sensors contain qualitative and quantitative information about the part of the analyzed sample which is sorbed by sensors. Despite the uncertainty of this information, “electronic noses” of piezoelectric type are widely used in the analysis of samples with complex varying composition.


2002 ◽  
Vol 18 (2) ◽  
pp. 109-111 ◽  
Author(s):  
Gerhard J. MOHR ◽  
Gleb ZHYLYAK ◽  
Tomas NEZEL ◽  
Ursula E. SPICHIGER-KELLER ◽  
Nicole KERNESS ◽  
...  

Sensors ◽  
2011 ◽  
Vol 11 (5) ◽  
pp. 4744-4766 ◽  
Author(s):  
Elizabeth A. Baldwin ◽  
Jinhe Bai ◽  
Anne Plotto ◽  
Sharon Dea

Author(s):  
Javier Monroy ◽  
Javier Gonzalez-Jimenez

Out of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment.


Sign in / Sign up

Export Citation Format

Share Document