Foam Extrusion Using Carbon Dioxide as a Blowing Agent

2008 ◽  
pp. 69-99
Author(s):  
Walter Michaeli ◽  
Dirk Kropp ◽  
Robert Heinz ◽  
Holger Schumacher
2019 ◽  
Vol 56 (1) ◽  
pp. 73-88
Author(s):  
Raphael Vincent ◽  
Martin Langlotz ◽  
Matthias Düngen

Decreased viscosity due to the influence of blowing agent in thermoplastic polymer melts is a key issue for understanding the process of foam extrusion. In a process for direct foam extrusion, a novel approach for inline viscosity measurement of single-phase systems in single screw extruders is used to experimentally evaluate a viscosity decrease. Two blowing agents (propane and carbon dioxide) are tested for their effect on the viscosity of a polypropylene melt. While mass fractions of blowing agent below [Formula: see text] show little to no effect in regard to viscosity reduction compared to a pure polymer melt, a mass fraction of [Formula: see text] already results in significantly decreased viscosity values. While melt temperature influences the viscosity of the polymer melt, measurements show no significant additional effect in regard to a lowered viscosity of a single-phase system of polymer and fully dissolved blowing agent.


Author(s):  
Chang Dae Han

There are two processes used in the production of thermoplastic foams, namely, foam extrusion and structural foam injection molding (Benning 1969; Frisch and Saunders 1973). Foam extrusion, in which either chemical or physical blowing agents are used, is the focus of this chapter. Investigations of foam extrusion have dealt with the type and choice of process equipment (Collins and Brown 1973; Knau and Collins 1974; Senn and Shenefiel 1971; Wacehter 1970), the effect of die design (Fehn 1967; Han and Ma 1983b), the effect of blowing agents on foaming characteristics (Burt 1978, 1979; Han and Ma 1983b; Hansen 1962; Ma and Han 1983), and relationships between the foam density, cell geometry, and mechanical properties (Croft 1964; Kanakkanatt 1973; Mehta and Colombo 1976; Meinecke and Clark 1973). Chemical blowing agents are generally low-molecular-weight organic compounds, which decompose at and above a critical temperature and thereby release a gas (or gases), for example, nitrogen, carbon dioxide, or carbon monoxide. Examples of physical blowing agents include nitrogen, carbon dioxide, fluorocarbons (e.g., trichlorofluoromethane, dichlorodifluoromethane, and dichlorotetrafluoroethane), pentane, etc. They are introduced as a component of the polymer charge or under pressure into the molten polymer in the barrel of the extruder. It is extremely important to control the formation and growth of gas bubbles in order to produce foams of uniform quality (i.e., uniform cell structure). The fundamental questions one may ask in thermoplastic foam processing are: (1) What is the optimal concentration of blowing agent in order to have the minimum number of open cells and thus the best achievable mechanical property? (2) How many bubbles will be nucleated at the instant of nucleation? (3) What is the critical pressure at which bubbles nucleate in a molten polymer? (4) What are the processing–property relationships in foam extrusion and structural foam injection molding? Understandably, the answers to such questions depend, among many factors, on: (1) the solubility of the blowing agent in a molten polymer, (2) the diffusivity of the blowing agent in a molten polymer, (3) the concentration of the blowing agent in the mixture with a molten polymer, (4) the chemical structure of the polymers, (5) the initial pressure of the system, and (6) the equilibrium (or initial) temperature of the system.


2018 ◽  
Vol 29 (10) ◽  
pp. 2643-2654 ◽  
Author(s):  
Jia-li Peng ◽  
Xuan-long Peng ◽  
James Runt ◽  
Chao-ming Huang ◽  
Kuo-shien Huang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 89 ◽  
Author(s):  
Hai-Chen Zhang ◽  
Chun-Na Yu ◽  
Yong Liang ◽  
Gui-Xiang Lin ◽  
Cong Meng

The foaming process and cellular morphologies of poly(styrene-co-acrylonitrile) (SAN)/chlorinated polyethylene (CPE) blends with supercritical carbon dioxide (scCO2) as a blowing agent were investigated in this study. As compared to pure SAN foam in the same batch, the foamed blends with various CPE elastomer content had smaller average pore size and larger cell density. This is probably related to the inhibition of bubble growth by elastomer, resulting in poor melt flowability and strong viscoelasticity, and the efficient bubble heterogeneous nucleation caused by numerous phase interfaces inside the incompletely compatible blend system. In addition, many tiny interconnected holes through the pore walls were formed to connect adjacent micropores in foamed blend samples. The formation mechanism of such interconnected pores is probably due to the fracture of stretched melt around the bubble from phase interfaces with weak interactions. These facts suggest an effective path to control pore size, cell density and even interconnected pores of blend foams depends on the compatibility of the blend system and difference in foamability of individual components in supercritical CO2.


1976 ◽  
Vol 20 (6) ◽  
pp. 1583-1595 ◽  
Author(s):  
C. D. Han ◽  
Y. W. Kim ◽  
K. D. Malhotra
Keyword(s):  

2011 ◽  
Vol 51 (11) ◽  
pp. 2328-2334 ◽  
Author(s):  
Jaap van Spronsen ◽  
Jeroen P.H. van Luijtelaer ◽  
Albert Stoop ◽  
J. Christian Scheper ◽  
Tjerk J. de Vries ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document