HIGH ENERGY SAVINGS THROUGH THE USE OF A NEW HIGH-PERFORMANCE HYDRAULIC COMPONENT THE K-TECH PROCESS

2015 ◽  
Author(s):  
Ivanilton Polato ◽  
Denilson Barbosa ◽  
Abram Hindle ◽  
Fabio Kon

Apache Hadoop has evolved significantly over the last years, with more than 60 releases bringing new features. By implementing the MapReduce programming paradigm and leveraging HDFS, its distributed file system, Hadoop has become a reliable and fault tolerant middleware for parallel and distributed computing over large datasets. Nevertheless, Hadoop may struggle under certain workloads, resulting in poor performance and high energy consumption. Users increasingly demand that high performance computing solutions being to address sustainability and limit power consumption. In this paper, we introduce HDFSH, a hybrid storage mechanism for HDFS, which uses a combination of Hard Disks and Solid-State Disks to achieve higher performance while saving power in Hadoop computations. HDFSH brings to middleware the best from HDs (affordable cost per GB and high storage capacity) and SSDs (high throughput and low energy consumption) in a configurable fashion, using dedicated storage zones for each storage device type. We implemented our mechanism as a block placement policy for HDFS, and assessed it over six recent releases of the Hadoop project, representing different designs of the Hadoop middleware. Results indicate that our approach increases overall job performance while decreasing the energy consumption under most hybrid configurations evaluated. Our results also showed that in many cases storing only part of the data in SSDs results in significant energy savings and execution speedups.


2015 ◽  
Author(s):  
Ivanilton Polato ◽  
Denilson Barbosa ◽  
Abram Hindle ◽  
Fabio Kon

Apache Hadoop has evolved significantly over the last years, with more than 60 releases bringing new features. By implementing the MapReduce programming paradigm and leveraging HDFS, its distributed file system, Hadoop has become a reliable and fault tolerant middleware for parallel and distributed computing over large datasets. Nevertheless, Hadoop may struggle under certain workloads, resulting in poor performance and high energy consumption. Users increasingly demand that high performance computing solutions being to address sustainability and limit power consumption. In this paper, we introduce HDFSH, a hybrid storage mechanism for HDFS, which uses a combination of Hard Disks and Solid-State Disks to achieve higher performance while saving power in Hadoop computations. HDFSH brings to middleware the best from HDs (affordable cost per GB and high storage capacity) and SSDs (high throughput and low energy consumption) in a configurable fashion, using dedicated storage zones for each storage device type. We implemented our mechanism as a block placement policy for HDFS, and assessed it over six recent releases of the Hadoop project, representing different designs of the Hadoop middleware. Results indicate that our approach increases overall job performance while decreasing the energy consumption under most hybrid configurations evaluated. Our results also showed that in many cases storing only part of the data in SSDs results in significant energy savings and execution speedups.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Özge Balcı ◽  
Merve Buldu ◽  
Ameen Uddin Ammar ◽  
Kamil Kiraz ◽  
Mehmet Somer ◽  
...  

AbstractBoron carbide powders were synthesized by mechanically activated annealing process using anhydrous boron oxide (B2O3) and varying carbon (C) sources such as graphite and activated carbon: The precursors were mechanically activated for different times in a high energy ball mill and reacted in an induction furnace. According to the Raman analyses of the carbon sources, the I(D)/I(G) ratio increased from ~ 0.25 to ~ 0.99, as the carbon material changed from graphite to active carbon, indicating the highly defected and disordered structure of active carbon. Complementary advanced EPR analysis of defect centers in B4C revealed that the intrinsic defects play a major role in the electrochemical performance of the supercapacitor device once they have an electrode component made of bare B4C. Depending on the starting material and synthesis conditions the conductivity, energy, and power density, as well as capacity, can be controlled hence high-performance supercapacitor devices can be produced.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Author(s):  
Haojie Li ◽  
Yihua Song ◽  
Kai Xi ◽  
Wei Wang ◽  
Sheng Liu ◽  
...  

A sufficient areal capacity is necessary for achieving high-energy lithium sulfur battery, which requires high enough sulfur loading in cathode materials. Therefore, kinetically fast catalytic conversion of polysulfide intermediates is...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chris Sundahl ◽  
Junki Makita ◽  
Paul B. Welander ◽  
Yi-Feng Su ◽  
Fumitake Kametani ◽  
...  

AbstractSuperconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1–2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200–240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration field in Nb3Sn, it has been proposed to coat Nb cavities with thin film Nb3Sn multilayers with dielectric interlayers. Here, we report the growth and multi-technique characterization of stoichiometric Nb3Sn/Al2O3 multilayers with good superconducting and RF properties. We developed an adsorption-controlled growth process by co-sputtering Nb and Sn at high temperatures with a high overpressure of Sn. The cross-sectional scanning electron transmission microscope images show no interdiffusion between Al2O3 and Nb3Sn. Low-field RF measurements suggest that our multilayers have quality factor comparable with cavity-grade Nb at 4.2 K. These results provide a materials platform for the development and optimization of high-performance SIS multilayers which could overcome the intrinsic limits of the Nb cavity technology.


Sign in / Sign up

Export Citation Format

Share Document