Remote Sensing for Glacier Morphological and Mass Balance Studies

2011 ◽  
pp. 349-362
Keyword(s):  
2000 ◽  
Vol 46 (154) ◽  
pp. 491-498 ◽  
Author(s):  
Alun Hubbard ◽  
Ian Willis ◽  
Martin Sharp ◽  
Douglas Mair ◽  
Peter Nienow ◽  
...  

AbstractAn indirect methodology for determining the distribution of mass balance at high spatial resolution using remote sensing and ice-flow modelling is presented. The method, based on the mass-continuity equation, requires two datasets collected over the desired monitoring interval: (i) the spatial pattern of glacier surface-elevation change, and (ii) the mass-flux divergence field. At Haut Glacier d’Arolla, Valais, Switzerland, the mass-balance distribution between September 1992 and September 1993 is calculated at 20 m resolution from the difference between the pattern of surface-elevation change derived from analytical photogrammetry and the mass-flux divergence field determined from three-dimensional, numerical flow modelling constrained by surface-velocity measurements. The resultant pattern of mass balance is almost totally negative, showing a strong dependence on elevation, but with large localized departures. The computed distribution of mass balance compares well (R2 = 0.91) with mass-balance measurements made at stakes installed along the glacier centre line over the same period. Despite the highly optimized nature of the flow-modelling effort employed in this study, the good agreement indicates the potential this method has as a strategy for deriving high spatial and temporal-resolution estimates of mass balance.


Author(s):  
Iwona Podsiadlo ◽  
Claudia Paris ◽  
Francesca Bovolo ◽  
Mattia Callegari ◽  
Ludovica De Gregorio ◽  
...  

2019 ◽  
Vol 65 (249) ◽  
pp. 136-148 ◽  
Author(s):  
CESAR DESCHAMPS-BERGER ◽  
CHRISTOPHER NUTH ◽  
WARD VAN PELT ◽  
ETIENNE BERTHIER ◽  
JACK KOHLER ◽  
...  

ABSTRACTIn this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was −0.69 ± 0.12 m w.e. a−1, while the mass budget method led to a total mass balance of −0.92 ± 0.16 m w.e. a−1, as a consequence of a strong frontal ablation (−0.78 ± 0.11 m w.e. a−1), and a slightly negative climatic mass balance (−0.14 ± 0.11 m w.e. a−1). The trend towards more negative climatic mass balance between 1966–1990 (+0.20 ± 0.05 m w.e. a−1) and 2009–2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.


1987 ◽  
Vol 33 (115) ◽  
pp. 363-368 ◽  
Author(s):  
A.N Krenke ◽  
V.M Menshutin

Abstract An investigation of the combined heat, ice, and water balances was carried out in the Marukh glacier basin (west Caucasus) in 1966–67 to 1976–77, according to the International Hydrological Decade programme. Averaged glacier mass balance for these 11 years appears to be −55 g cm−2 year−1 according to stake measurements, and −51 g cm−2 year−1 according to geodetic measurements. The variability of accumulation is estimated as C v = 0.15 and of ablation as C v = 0.11. Thus, the variation in accumulation governs the oscillations in glacier balance. The inner nourishment of the glacier was also taken into account. The glacier mass balance is closely related to the relation between the accumulation and ablation areas. The “transient” values of both figures during the whole period of ablation can be used for this relation. The forms of the accumulation and ablation fields are similar from year to year and from one 10 day period to another. The areas of the accumulation and ablation zones are very different from one year to another. On the contrary, the average specific balance for each zone changes very little. One can use these features for the construction of accumulation, ablation, and specific mass-balance maps from satellite imagery. Mean values for the mass-balance terms occur in the vicinity of the equilibrium line. They can be calculated by using the air temperatures. Deviations from the means in different areas of the glacier determine the typical fields of the mass-balance terms.


2016 ◽  
Vol 11 (6) ◽  
pp. 1040-1051
Author(s):  
Tong Liu ◽  
◽  
Tsuyoshi Kinouchi ◽  
Javier Mendoza ◽  
Yoichi Iwami ◽  
...  

In investigating glacier mass balance and water balance at Huayna Potosi West, a glacierized basin in the Bolivian Andes (Cordillera Real), we used a remote sensing method with empirical area-volume relationships, a hydrological method with runoff coefficients, and water balance method. Results suggest that remote sensing method based on the glacier area from satellite images and area-volume relationships is too imprecise to use in performing analysis in short time intervals. Glacier mass balance obtained using a new area-volume relationship was, however, similar to that obtained by the water balance method, thus proving that the new area-volume relationship is reasonable to use for analyzing glaciers within a certain size range. The hydrological method with a runoff coefficient considered glacier as the only storage for saving or contributing to runoff and nonglacier area as the only source of evaporation. We applied a fixed runoff coefficient of 0.8 without considering wet or dry seasons in nonglacier areas – a method thus sensitive to meteorological and hydrological data. We also did not consider glacier sublimation. The water balance method is applicable to the study region and excelled other methods in terms of resolution, having no empirical coefficients, and considering sublimation and evaporation. Among its few limitations are possibly underestimating evaporation and runoff over nonglacier areas during wet months and thus possibly overestimating glacier contribution at mean time.


2021 ◽  
Author(s):  
Christian Vincent ◽  
Diego Cusicanqui ◽  
Bruno Jourdain ◽  
Olivier Laarman ◽  
Delphine Six ◽  
...  

<p>Mass balance observations are very useful to assess climate change in different regions of the world. As opposed to glacier-wide mass balances, which are influenced by the dynamic response of each glacier, point mass-balances provide a direct climatic signal that depends on surface accumulation and ablation only. Unfortunately, major efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach that determines point surface mass balances from remote sensing observations. We call this balance the geodetic point surface mass balance. From observations and modelling performed on Argentière and Mer de Glace glaciers over the last decade, we show that the vertical ice flow velocity changes are small in areas of low bedrock slope. Therefore, assuming constant vertical velocities in time for such areas and provided that the vertical velocities have been measured for at least one year in the past, our method can be used to reconstruct annual point surface mass balances from surface elevations and horizontal velocities alone. We demonstrate that the annual point surface mass balances can be reconstructed with an accuracy of about 0.3 m w.e. a<sup>-1</sup> using the vertical velocities observed over the previous years and data from Unmanned Aerial Vehicle images. Given the recent improvements of satellite sensors, it should be possible to apply this method to high spatial resolution satellite images as well.</p>


Sign in / Sign up

Export Citation Format

Share Document