Properties and Models of Semiconductor Devices Used in Analog Electronic Systems

2014 ◽  
Vol 1016 ◽  
pp. 521-525 ◽  
Author(s):  
V.V. Shurenkov

The electronic systems of aerospace techniques include power microwave devices and analog and digital semiconductor devices. The radiation of power microwave devices may effect on the semiconductor devices. So it’s necessary to know the electromagnetic effects of this radiation on the semiconductor devices. The electromagetic effects of the microwave radiation exposure on the semiconductor diodes, the main part of any semiconductor devices, are considered. The changes of current – voltage characteristics of the diodes are explained, outgoing from the model of the recombination of carriers through deep energy level recombination center in forbidden gap induced by microwave radiation field.


1999 ◽  
Vol 8 (1) ◽  
pp. 20-24
Author(s):  
Walter Schwarzacher

Since the discovery of the transistor just over 50 years ago (see Interface Vol. 6, No. 1), the cost of electronic systems has been reduced and their performance dramatically improved. New technology has resulted in individual components becoming ever smaller and more highly integrated. Controlling the structure of semiconductor devices on a submicron scale has become routine.


2021 ◽  
Author(s):  
Maximillian Holliday ◽  
Thomas Heuser ◽  
Zachary Manchester ◽  
Debbie Senesky

This work proposes a "dynamic biasing" technique and uses on-orbit simulations with experimental testing to demonstrate up to a 16x improvement in total-dose lifetimes for COTS devices without additional shielding or modifications to the chip. Building upon this foundation, the dynamic biasing technique offers a unique opportunity for microelectronic systems to begin intelligently responding in real-time to their radiation environment. We believe this fundamental technique can become an integral tool to countless future electronic systems in space.<br>


2021 ◽  
Author(s):  
Maximillian Holliday ◽  
Thomas Heuser ◽  
Zachary Manchester ◽  
Debbie Senesky

This work proposes a "dynamic biasing" technique and uses on-orbit simulations with experimental testing to demonstrate up to a 16x improvement in total-dose lifetimes for COTS devices without additional shielding or modifications to the chip. Building upon this foundation, the dynamic biasing technique offers a unique opportunity for microelectronic systems to begin intelligently responding in real-time to their radiation environment. We believe this fundamental technique can become an integral tool to countless future electronic systems in space.<br>


Author(s):  
Peter Pegler ◽  
N. David Theodore ◽  
Ming Pan

High-pressure oxidation of silicon (HIPOX) is one of various techniques used for electrical-isolation of semiconductor-devices on silicon substrates. Other techniques have included local-oxidation of silicon (LOCOS), poly-buffered LOCOS, deep-trench isolation and separation of silicon by implanted oxygen (SIMOX). Reliable use of HIPOX for device-isolation requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of HIPOX-related stresses in the structures is of interest because structuraldefects, if formed, could electrically degrade devices.This investigation was performed to study the origin and behavior of defects in recessed HIPOX (RHIPOX) structures. The structures were exposed to a boron implant. Samples consisted of (i) RHlPOX'ed strip exposed to a boron implant, (ii) recessed strip prior to HIPOX, but exposed to a boron implant, (iii) test-pad prior to HIPOX, (iv) HIPOX'ed region away from R-HIPOX edge. Cross-section TEM specimens were prepared in the <110> substrate-geometry.


Author(s):  
Terrence Reilly ◽  
Al Pelillo ◽  
Barbara Miner

The use of transmission electron microscopes (TEM) has proven to be very valuable in the observation of semiconductor devices. The need for high resolution imaging becomes more important as the devices become smaller and more complex. However, the sample preparation for TEM observation of semiconductor devices have generally proven to be complex and time consuming. The use of ion milling machines usually require a certain degree of expertise and allow a very limited viewing area. Recently, the use of an ultra high resolution "immersion lens" cold cathode field emission scanning electron microscope (CFESEM) has proven to be very useful in the observation of semiconductor devices. Particularly at low accelerating voltages where compositional contrast is increased. The Hitachi S-900 has provided comparable resolution to a 300kV TEM on semiconductor cross sections. Using the CFESEM to supplement work currently being done with high voltage TEMs provides many advantages: sample preparation time is greatly reduced and the observation area has also been increased to 7mm. The larger viewing area provides the operator a much greater area to search for a particular feature of interest. More samples can be imaged on the CFESEM, leaving the TEM for analyses requiring diffraction work and/or detecting the nature of the crystallinity.


Sign in / Sign up

Export Citation Format

Share Document