mechanics approach, similar values for the fracture energy are calculated; although the failure of the film under the indenter tip suggests a possible embrittlement of the ductile Al film in the presence of contaminants. The evidence of fracture within the carbon layer supports similar trends reported in whisker pull-out tests in which a carbon layer formation has been reported to decrease the fracture resistance [36]. Weak bonding has been reported for a range of interfacial carbon layer thicknesses. Brennan [37, 38] has cited an extensive fiber pull-out occurring in composites with a 10-40 nm layer of carbon present, attributed to debonding within the carbon layers. The effect on shear strength was recently reported by Dehm et al. [39] in which a decrease in the adhesion of copper to sapphire was observed by incorporating up to 110 nm thick carbon layers. Our current investigation shows that the debonding within a carbon layer occurs in much thinner layers than previously reported. The presence of a carbide suggests that

2014 ◽  
pp. 176-183
1998 ◽  
Vol 539 ◽  
Author(s):  
H. Kettunen ◽  
K. J. Niskanen

AbstractWe follow the accumulation of microscopic damage ahead the crack tip in paper. The fiber debonding process varies even within each specimen because of large variation in fiber and bond properties. In general, stiff and weakly bonded fibers tend to debond as a rigid body while ductile or well bonded fibers pull out gradually in a process that propagates from the crack line to the fiber ends. Particularly in the latter case the network ruptures coherently rather than through debonding of single fibers. Experimental analysis and simulations show that fracture energy correlates closely with the size of the fracture process zone (FPZ) irrespective the nature of the debonding process. Only the cases of low bonding and stiff fibers seem to make an exception in that FPZ can grow in size without a corresponding increase in fracture energy.


2000 ◽  
Vol 15 (12) ◽  
pp. 2758-2769 ◽  
Author(s):  
Michael Lane ◽  
Reinhold H. Dauskardt ◽  
Anna Vainchtein ◽  
Huajian Gao

The effects of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures were explored using experiments and multiscale simulations. Particular attention was given to the relationship between the intrinsic work of adhesion, Go, and the measured macroscopic fracture energy, Gc. Specifically, the TaN/SiO2 interface fracture energy was measured in thin-film Cu/TaN/SiO2 structures in which the Cu layer was varied over a wide range of thickness. A continuum/FEM model with cohesive surface elements was employed to calculate the macroscopic fracture energy of the layered structure. Published yield properties together with a plastic flow model for the metal layers were used to predict the plasticity contribution to interface fracture resistance where the film thickness (0.25–2.5 μm) dominated deformation behavior. For thicker metal layers, a transition region was identified in which the plastic deformation and associated plastic energy contributions to Gc were no longer dominated by the film thickness. The effects of other salient interface parameters including peak cohesive stress and Go are explored.


2021 ◽  
Author(s):  
He Peng ◽  
Daolun Chen ◽  
Xianquan Jiang

The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. Keywords: aluminum alloy; ultrasonic spot welding; EBSD; microstructure; tensile strength; fatigue


2003 ◽  
Vol 31 (1) ◽  
pp. 63-67
Author(s):  
Kaori NAGAI ◽  
Kenji SUGIMOTO

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Enmao Quan ◽  
Yangsen Cao ◽  
Hongke Xu

To broaden the application of the basalt fiber in the preventive maintenance of asphalt pavement, this study investigated the bonding performance and evaluated the comprehensive performance of the basalt fiber asphalt macadam seal. Firstly, different types of basalt fiber asphalt macadam seal were prepared. The influences of content and length of the basalt fiber and dosage of emulsified asphalt on the bonding performance of the asphalt macadam seal were analyzed and compared. Next, by using the efficacy coefficient method, comprehensive performance considering both mechanical and economic characteristics of the basalt fiber asphalt macadam seal was evaluated. After that, reasonable content of each material was determined. Finally, the strengthening mechanism of the fiber on the bonding performance of macadam seals was revealed from a microscopic view. The results showed that compared with the ordinary asphalt macadam seal, the loss aggregate rate of the basalt fiber asphalt macadam seal was 11.0–30.5% lower, and the pull-out strength, shear strength, and torsional shear strength were 11.7–16.3%, 9.7–22.4%, and 4.2–20.6% higher, respectively. Considering the bonding performance and economic benefits, the optimal amount of emulsified asphalt and basalt fiber was 1.6 kg/m2 and 70 g/m2, respectively. Basalt fiber increased the cohesion of the asphalt material and improved the bonding performance of asphalt macadam seals through formation of the three-dimensional network structure. This study can provide reference to the application of basalt fibers in asphalt pavement maintenance.


2002 ◽  
Vol 11 (1) ◽  
pp. 096369350201100 ◽  
Author(s):  
J. M. Caceres ◽  
A. N. Netravali

The paper discusses a simple specimen geometry to obtain the fibre/cement interfacial shear strength (IFSS). The specimens are easy to prepare and easy to test. The technique gives reliable and reproducible results. IFSS results for five different fibres with cement were measured. Most IFSS values obtained are in the range of 0.15 to 1.5 MPa. Despite the simplicity of the technique presented in this study, the results are in agreement with those obtained by several other researchers using different techniques and specimen geometry.


1986 ◽  
Vol 78 ◽  
Author(s):  
A. G. Evans ◽  
M. Rühle ◽  
B. J. Daigleish ◽  
M. D. Thouless

ABSTRACTSome aspects of whisker toughening are reviewed. It is shown that several important toughened materials have a toughness dominated by the nonlinear bridging of intact whiskers. Such toughening is demonstrated to depend sensitively on the relative fracture resistance properties of the whiskers, the interface and the matrix. It is also shown that, when the interface fracture resistance is low, the frictional sliding behavior of the previously debonded interface and the whisker strength distribution exert a major influence on toughness, in accordance with pull-out phenomena.


Sign in / Sign up

Export Citation Format

Share Document