Affective interactions: Developing a framework to enable meaningful haptic interactions over geographic distance

2012 ◽  
pp. 704-710
2019 ◽  
Vol 28 (4) ◽  
pp. 195-208
Author(s):  
Katherine Reifurth ◽  
Matthew Bernthal ◽  
Khalid Ballouli ◽  
Dorothy Collins

2020 ◽  
Vol 27 (6) ◽  
pp. 307-315
Author(s):  
Özgür Güçlü ◽  
Bülent Bozdoğan

The Nile soft-shelled turtle (Trionyx triunguis) is distributed between Dalyan and Samandağ throughout the Mediterranean coast in Turkey. The Mediterranean subpopulation of the Nile soft-shelled turtle is listed as critically endangered in the IUCN Red List Categories. This investigation aimed to determinate levels of genetic variations and patterns of genetic structures among Mediterranean populations in Turkey by using T. triunguis-specific microsatellite primers. A total of 13 polymorphic microsatellite loci were studied among samples of 121 individuals collected from five populations in Turkey. Of 13 polymorphic microsatellite loci used, 3 new were identified in this study. The genetic differentiation among the 5 studied populations of T. triunguis was significant (p 0.001). The analysis of molecular variance (AMOVA) indicated that genetic variations occurred mainly within populations (89.7%) rather than among populations (10.3%). Structure analysis showed presence of two main groups among the Mediterranean T. triunguis populations. However genetic variations among populations were not correlated with geographic distance between the locations. Analysis of data showed that one of the populations (Dalyan) had undergone a bottleneck effect. Migration analysis indicates that T. triunguis migrates between five Mediterranean populations in Turkey. We concluded that based on our results the status of ‘critically endangered’ of T. triunguis should be maintained. Long term population genetic survey studies should be undertaken and changes in habitats of T. triunguis populations, as well as their population size and structure should be monitored for each population to be able to establish a clear strategy for protection of T. triunguis.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Zachary Charlop-Powers ◽  
Jeremy G Owen ◽  
Boojala Vijay B Reddy ◽  
Melinda A Ternei ◽  
Denise O Guimarães ◽  
...  

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts.


Author(s):  
Alex J. Veglia ◽  
Nicholas M. Hammerman ◽  
Carlos R. Rivera Rosaly ◽  
Matthew Q. Lucas ◽  
Alexandra Galindo Estronza ◽  
...  

Symbiotic relationships are a common phenomenon among marine invertebrates, forming both obligatory and facultative dependencies with their host. Here, we investigate and compare the population structure of two crustacean species associated with both shallow and mesophotic ecosystems: an obligate symbiont barnacle (Ceratoconcha domingensis), of the coral Agaricia lamarcki and a meiobenthic, free-living harpacticoid copepod (Laophontella armata). Molecular analyses of the Cytochrome Oxidase Subunit I (COI) gene revealed no population structure between mesophotic and shallow barnacle populations within south-west Puerto Rico (ΦST = 0.0079, P = 0.33). The absence of population structure was expected due to the pelagic naupliar larvae of the barnacles and the connectivity patterns exhibited by the coral itself within the same region. Laophontella armata exhibited significant structure based on the mitochondrial COI gene between the mesophotic reef ecosystem of El Seco, Puerto Rico and mangrove sediments of Curaçao (ΦST = 0.2804, P = 0.0). The El Seco and Curaçao copepods shared three COI haplotypes despite the obligatory benthic development of harpacticoid copepods and the geographic distance between the two locations. Three other COI haplotypes from El Seco exhibited higher than expected (up to 7%) intra-species variability, potentially representing three new cryptic species of harpacticoid copepods or rare, deeply divergent lineages of L. armata. This result is evidence for the urgent need of a deeper investigation into the meiofauna diversity associated with mesophotic coral ecosystems (MCEs), arguably the most diverse metazoan component of MCEs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luca Villa ◽  
Pavlo Maksimov ◽  
Christine Luttermann ◽  
Mareen Tuschy ◽  
Alessia L. Gazzonis ◽  
...  

Abstract Background Neospora caninum, a coccidian protozoan, represents an important cause of bovine abortion. Available N. caninum strains show considerable variation in vitro and in vivo, including different virulence in cattle. To which extent sexual recombination, which is possible in the intestines of domestic dogs and closely related carnivores as definitive hosts, contributes to this variation is not clear yet. Methods Aborted bovine foetuses were collected between 2015 and early 2019 from Italian Holstein Friesian dairy herds suffering from reproductive problems. A total of 198 samples were collected from 165 intensive farms located in Lombardy, northern Italy. N. caninum samples were subjected to multilocus-microsatellite genotyping using ten previously established microsatellite markers. In addition to our own data, those from a recent study providing data on five markers from other northern Italian regions were included and analysed. Results Of the 55 samples finally subjected to genotyping, 35 were typed at all or 9 out of 10 loci and their individual multilocus-microsatellite genotype (MLMG) determined. Linear regression revealed a statistically significant association between the spatial distance of the sampling sites with the genetic distance of N. caninum MLMGs (P < 0.001). Including data from this and a previous North Italian study into eBURST analysis revealed that several of N. caninum MLMGs from northern Italy separate into four groups; most of the samples from Lombardy clustered in one of these groups. Principle component analysis revealed similar clusters and confirmed MLMG groups identified by eBURST. Variations observed between MLMGs were not equally distributed over all loci, but predominantly observed in MS7, MS6A, or MS10. Conclusions Our findings confirm the concept of local N. caninum subpopulations. The geographic distance of sampling was associated with the genetic distance as determined by microsatellite typing. Results suggest that multi-parental recombination in N. caninum is a rare event, but does not exclude uniparental mating. More comprehensive studies on microsatellites in N. caninum and related species like Toxoplasma gondii should be undertaken, not only to improve genotyping capabilities, but also to understand possible functions of these regions in the genomes of these parasites.


Sign in / Sign up

Export Citation Format

Share Document