Direct Graphene Growth on Dielectric Substrates

Author(s):  
Jeffry Kelber
2019 ◽  
Vol 8 (4) ◽  
pp. 37
Author(s):  
John U. Arikpo ◽  
Michael U. Onuu

It is about a decade since graphene became a material for serious research by researchers in condensed matter of various nationalities making significant progress. This paper on graphene growth and characterization: advances, present challenges and prospects is therefore timely. Basic topics such as graphene and graphene technology, history and trend of graphene as well as graphene growth and synthesis have been discussed. Also presented are fundamental and mechanical properties, structural and morphological property characterization using different techniques. Graphene in biomedical and radio frequency applications, transparent electronics, integrated circuits, quantum dots, frequency multiplier, optical modulator and piezoelectricity and as a battery super capacitor are some applications and uses of graphene that have been considered. The lowering of the growth temperature of graphene has been found to be beneficial for the compartibility with other materials and processes and could also decrease the impact of cooling-induced wrinkling on the morphology of graphene; the growth on dielectric substrates; being able to resolve many problems associated with metallic growth substrates; better control of both the formation and the extension of additional layers on the graphene through substrate engineering that will result in approaches of graphene that is envisaged are some of the advances and future prospects. Also, the proposed tunable bandgap for graphene which is essential for microelectronics which contributes one of the present challenges is likely to be achieved in the very near future. Although theoretical and computational analyses have proved to have solved the zero bandgap problem of graphene, more convincing approaches that will solve the problem and give way for the fabrication of high performance graphene device are being awaited.


2016 ◽  
Vol 120 (4) ◽  
pp. 045309 ◽  
Author(s):  
Joseph M. Wofford ◽  
Florian Speck ◽  
Thomas Seyller ◽  
Joao Marcelo J. Lopes ◽  
Henning Riechert

2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


Alloy Digest ◽  
1980 ◽  
Vol 29 (12) ◽  

Abstract SOMERS LTA Copper is a wrought copper foil that can be annealed at 350 F in 15 minutes to the full-soft condition; its use simplifies the manufacture of printed circuits (LTA = Low-Temperature Annealable). LTA Copper is especially useful for foil weights up to and including one ounce per square foot (0.0014-inch thick) for laminating to high-temperature dielectric substrates. This datasheet provides information on composition, physical properties, and elasticity as well as fatigue. It also includes information on forming, heat treating, and machining. Filing Code: Cu-407. Producer or source: Olin Corporation.


2009 ◽  
Vol 80 (23) ◽  
Author(s):  
E. Starodub ◽  
S. Maier ◽  
I. Stass ◽  
N. C. Bartelt ◽  
P. J. Feibelman ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4421
Author(s):  
Ángela Barreda ◽  
Pablo Albella ◽  
Fernando Moreno ◽  
Francisco González

High refractive index dielectric (HRID) nanoparticles are a clear alternative to metals in nanophotonic applications due to their low losses and directional scattering properties. It has been demonstrated that HRID dimers are more efficient scattering units than single nanoparticles in redirecting the incident radiation towards the forward direction. This effect was recently reported and is known as the “near zero-backward” scattering condition, attained when nanoparticles forming dimers strongly interact with each other. Here, we analyzed the electromagnetic response of HRID isolated nanoparticles and aggregates when deposited on monolayer and graded-index multilayer dielectric substrates. In particular, we studied the fraction of radiation that is scattered towards a substrate with known optical properties when the nanoparticles are located on its surface. We demonstrated that HRID dimers can increase the radiation emitted towards the substrate compared to that of isolated nanoparticles. However, this effect was only present for low values of the substrate refractive index. With the aim of observing the same effect for silicon substrates, we show that it is necessary to use a multilayer antireflection coating. We conclude that dimers of HRID nanoparticles on a graded-index multilayer substrate can increase the radiation scattered into a silicon photovoltaic wafer. The results in this work can be applied to the design of novel solar cells.


Sign in / Sign up

Export Citation Format

Share Document