Extracellular Vesicles and Tissue Factor

2014 ◽  
pp. 355-374
2019 ◽  
Vol 173 ◽  
pp. 141-150 ◽  
Author(s):  
Morten Mørk ◽  
Jan J. Andreasen ◽  
Lars H. Rasmussen ◽  
Gregory Y.H. Lip ◽  
Shona Pedersen ◽  
...  

2021 ◽  
Vol 5 (6) ◽  
pp. 1682-1694
Author(s):  
Nadim Tawil ◽  
Rayhaan Bassawon ◽  
Brian Meehan ◽  
Ali Nehme ◽  
Laura Montermini ◽  
...  

Abstract Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type–based diagnosis and antithrombotic intervention.


2021 ◽  
Vol 5 (3) ◽  
pp. 628-634
Author(s):  
Christophe Guervilly ◽  
Amandine Bonifay ◽  
Stephane Burtey ◽  
Florence Sabatier ◽  
Raphaël Cauchois ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) has become one of the biggest public health challenges of this century. Severe forms of the disease are associated with a thrombo-inflammatory state that can turn into thrombosis. Because tissue factor (TF) conveyed by extracellular vesicles (EVs) has been implicated in thrombosis, we quantified the EV-TF activity in a cohort of hospitalized patients with COVID-19 (n = 111) and evaluated its link with inflammation, disease severity, and thrombotic events. Patients with severe disease were compared with those who had moderate disease and with patients who had septic shock not related to COVID-19 (n = 218). The EV-TF activity was notably increased in patients with severe COVID-19 compared with that observed in patients with moderate COVID-19 (median, 231 [25th to 75th percentile, 39-761] vs median, 25 [25th to 75th percentile, 12-59] fM; P < .0001); EV-TF was correlated with leukocytes, D-dimer, and inflammation parameters. High EV-TF values were associated with an increased thrombotic risk in multivariable models. Compared with patients who had septic shock, those with COVID-19 were characterized by a distinct coagulopathy profile with significantly higher EV-TF and EV-fibrinolytic activities that were not counterbalanced by an increase in plasminogen activator inhibitor-1 (PAI-1). Thus, this article is the first to describe the dissemination of extreme levels of EV-TF in patients with severe COVID-19, which supports the international recommendations of systematic preventive anticoagulation in hospitalized patients and potential intensification of anticoagulation in patients with severe disease.


2019 ◽  
Vol 70 (1) ◽  
pp. e661
Author(s):  
Mattias Mandorfer ◽  
Johannes Thaler ◽  
Lena Hell ◽  
Philipp Schwabl ◽  
Lukas Wisgrill ◽  
...  

Haematologica ◽  
2020 ◽  
pp. haematol.2019.220210 ◽  
Author(s):  
Philipp J. Hohensinner ◽  
Julia Mayer ◽  
Julia Kichbacher ◽  
Julia Kral-Pointner ◽  
Barbara Thaler ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0240189
Author(s):  
Marcela Rosas ◽  
David A. Slatter ◽  
Samya G. Obaji ◽  
Jason P. Webber ◽  
Jorge Alvarez-Jarreta ◽  
...  

2017 ◽  
Vol 159 ◽  
pp. 24-32 ◽  
Author(s):  
Fausto G. Gomes ◽  
Vanessa Sandim ◽  
Vitor H. Almeida ◽  
Araci M.R. Rondon ◽  
Barbara B. Succar ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1425-1425
Author(s):  
Ludwig Traby ◽  
Hannah C. Puhr ◽  
Marietta Kollars ◽  
Kammer Michael ◽  
Gerald Prager ◽  
...  

Abstract Introduction Venous thromboembolism is a frequent complication in cancer patients and results in a considerable morbidity and mortality. The underlying mechanisms leading to the increased thrombotic risk are yet poorly understood. We have previously shown that levels of extracellular vesicles (EV) are elevated in patients with colorectal cancer compared to healthy control individuals (Hron et al, Thromb Haemost 2007;97:119-123). EV originate from blood or endothelial cells, or from the underlying tumor itself. They may contribute to coagulation activation and propagation by exposing tissue factor and by providing a surface for the interaction of coagulation factors. In that study, the number of EV was also positively correlated with levels of D-dimer, a fibrin split product and marker of coagulation activation. We hypothesize that number of EV and levels of D-dimer decline with decreasing tumor load during antineoplastic treatment. Therefore, the study aims at evaluating the long-term effect of chemotherapy on hemostatic system activation in patients with advanced colorectal cancer. Methods We conducted a pilot study including patients receiving chemotherapy because of advanced colorectal cancer. All chemotherapy regimens were based on 5-fluorouracilcombined with either oxaliplatin or irinotecan without or with an antibody (bevacizumab in 72%, cetuximab in 11%, and ramucirumab in 5% of patients, respectively). Patients were followed for 3 chemotherapy cycles. The study was approved by the local ethics committee, was conducted according to the Declaration of Helsinki and informed consent was obtained from all study patients. Venous blood was sampled at each cycle immediately before chemotherapy and was centrifuged at 2600 g for 15 minutes. The number of EV was assessed by flow cytometry using a FACSCalibur® flow cytometer with CellQuest™ software (Becton Dickinson) immediately after blood collection and centrifugation in fresh plasma. EV were defined by size (forward scatter, <1 µm) and annexin V binding. Tissue factor positive EV were characterized by an anti-CD142 antibody. Plasma was then frozen and stored at -80°C and was used for determination of markers of coagulation activation (D-dimer, prothrombin fragment f1.2) by commercially available ELISA kits. All outcome variables were log-transformed due to skewed distributions. The paired t-test was used to compare baseline (before the 1st chemotherapy) levels with measurements obtained from the 2nd and 3rd blood sampling. In order to provide a clearer legibility, all data is presented in absolute numbers and all values are given as median (quartiles) if not otherwise stated. Results 18 patients completed 3 cycles of chemotherapy. Their mean (± SD) age was 60.5 (± 12.2) years and 14 (78%) were men. None of the patients developed venous thromboembolism. Table 1 shows the levels of coagulation activation markers and the number of EV at baseline and before the 2nd and 3rd cycle of chemotherapy, respectively. D-dimer levels were 1.22 (0.42-2.31) µg mL-1 at baseline and significantly decreased over the course of treatment. D-dimer levels did not correlate with the number of EV either at baseline or at later time points. The number of EV decreased from 474 (312-617) x 103 mL-1 at baseline to 359 (239-474) x 103 mL-1 before the 3rd cycle. The proportion of tissue factor positive EV was small at baseline and throughout treatment. Levels of prothrombin fragment f1.2 did not change during treatment and did not correlate with number of EV at any time point. Conclusions In patients with advanced colorectal cancer chemotherapy attenuates coagulation activation as indicated by a decline of D-dimer levels and number of EV. These findings warrant further studies in a larger patient population and longer observation time. Table 1 Number of extracellular vesicles (EV) and markers of coagulation activation in plasma of colorectal cancer patients before and during chemotherapy Table 1. Number of extracellular vesicles (EV) and markers of coagulation activation in plasma of colorectal cancer patients before and during chemotherapy Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S132-S132
Author(s):  
A Thulin ◽  
J Yan ◽  
M Aberg ◽  
C Christersson ◽  
M Kamali-Moghaddam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document