Radiative Transfer in the Deep Interior of the Sun

2009 ◽  
pp. 107-112
1988 ◽  
Vol 123 ◽  
pp. 133-136
Author(s):  
Hiromoto Shibahashi

By using the quantization rule based on the WKB asymptotic method, we present an integral equation to infer the form of the acoustic potential of a fixed ℓ as a function of the acoustic length. Since we analyze the acoustic potential itself by taking account of some factors other than the sound velocity and we can analyze the radial modes by this scheme as well as nonradial modes, this method improves the accuracy and effectiveness of the inverse problem to infer the internal structure of the Sun, in particular, the deep interior of the Sun.


2020 ◽  
Author(s):  
Patrick Irwin ◽  
Colin Wilson ◽  
Juan Alday ◽  
Maarten Roos-Serote ◽  
Jo Barstow ◽  
...  

<p>In this presentation we will describe recent work to model upward and downward fluxes of solar and thermal radiation in the atmosphere of Venus using the NEMESIS radiative transfer and retrieval tool (Irwin et al., JQSRT, 109, 1136, 2008). Using a plane-parallel matrix operator multiple-scattering model we simulate the internal 3D radiation field within Venus’ atmosphere and compare our simulations with the observations of the Pioneer Venus and Venera 13 and 14 entry probes. Such simulations allow us to assess the availability of sunlight and the visibility of the sun azimuth direction in the cloud layer for potential balloon missions, and also enables us to predict at what altitude the surface will become visible for probes descending on dayside. A reanalysis of the Venera 13 and 14 radiance spectra observations will be used to reassess earlier estimates of cloud structure and water vapour abundance. Such modelling also allows us to simulate the visible appearance of Venus’ atmosphere during the descent of a probe mission as will be shown.</p>


1974 ◽  
Vol 65 ◽  
pp. 229-239
Author(s):  
Reinhard Beer

During the 1971 opposition of Mars, new infrared spectra covering the region 1800–3200 cm−1 (3.1–5.6μ) were taken at a resolution of 0.095 cm−1 using a Connes'-type Fourier spectrometer on the 2.7 m telescope, McDonald Observatory. Spectra were obtained near 6° and 33° phase and were calibrated against the Sun, standard stars and an internal black body.No new trace constituents have, as yet, been found in the spectra, but several previously unobserved combination and isotopic bands of CO2 are visible. It has also been found possible to fit fairly well defined kinetic temperatures and Bond albedos to the two sets of data. The kinetic temperatures have been determined by a new technique. It is found that the albedo at 33° phase, which was determined a few days after the onset of the great dust storm of 1971, was significantly higher than for the clear atmosphere. The explanation for this phenomenon must await detailed radiative transfer calculations for a dust-laden atmosphere.


1967 ◽  
Vol 28 ◽  
pp. 471-483
Author(s):  
G. B. Rybicki

One easily observed violation of the classical assumptions of stellar atmosphere theory is the presence of the horizontal inhomogeneities on the solar surface. There are many forms of these inhomogeneities, some clearly connected with the underlying convection zone, and others whose origins are not as yet understood. The most outstanding of these, perhaps, is the solar granulation, which appears as a fairly random pattern on high resolution photographs of the Sun.


2019 ◽  
Vol 488 (1) ◽  
pp. 1005-1011 ◽  
Author(s):  
Sebastián Pérez ◽  
Sebastián Marino ◽  
Simon Casassus ◽  
Clément Baruteau ◽  
Alice Zurlo ◽  
...  

ABSTRACT The Solar system gas giants are each surrounded by many moons, with at least 50 prograde satellites thought to have formed from circumplanetary material. Just like the Sun is not the only star surrounded by planets, extrasolar gas giants are likely surrounded by satellite systems. Here, we report on Atacama Large Millimeter/Submillimeter Array (ALMA) observations of four <40 Myr old stars with directly imaged companions: PZ Tel, AB Pic, 51 Eri, and κ And. Continuum emission at 1.3 mm is undetected for any of the systems. Since these are directly imaged companions, there is knowledge of their temperatures, masses, and locations. These allow for upper limits on the amount of circumplanetary dust to be derived from detailed radiative transfer models. These protolunar disc models consider two disc sizes: 0.4 and 0.04 times the exoplanet’s Hill radius. The former is representative of hydrodynamic simulations of circumplanetary discs, while the latter a case with significant radial drift of solids. The more compact case is also motivated by the semimajor axis of Callisto, enclosing Jupiter’s Galilean satellites. All upper limits fall below the expected amount of dust required to explain regular satellite systems (∼10−4 times the mass of their central planet). Upper limits are compared with viscous evolution and debris disc models. Our analysis suggests that the non-detections can be interpreted as evidence of dust growth beyond metre sizes to form moonetesimals in time-scales ≲10 Myr. This sample increases by 50 per cent the number of ALMA non-detections of young companions available in the literature.


2020 ◽  
Vol 500 (2) ◽  
pp. 2020-2035 ◽  
Author(s):  
N V Erkaev ◽  
M Scherf ◽  
S E Thaller ◽  
H Lammer ◽  
A V Mezentsev ◽  
...  

ABSTRACT We apply a 1D upper atmosphere model to study thermal escape of nitrogen over Titan’s history. Significant thermal escape should have occurred very early for solar extreme ultraviolet (EUV) fluxes 100–400 times higher than today with escape rates as high as ≈1.5 × 1028 s−1 and ≈4.5 × 1029 s−1, respectively, while today it is ≈7.5 × 1017 s−1. Depending on whether the Sun originated as a slow, moderate, or fast rotator, thermal escape was the dominant escape process for the first 100–1000 Myr after the formation of the Solar system. If Titan’s atmosphere originated that early, it could have lost between $\approx0.5\,\, \mathrm{ and}\,\, 16$ times its present atmospheric mass depending on the Sun’s rotational evolution. We also investigated the mass-balance parameter space for an outgassing of Titan’s nitrogen through decomposition of NH3-ices in its deep interior. Our study indicates that, if Titan’s atmosphere originated at the beginning, it could have only survived until today if the Sun was a slow rotator. In other cases, the escape would have been too strong for the degassed nitrogen to survive until present day, implying later outgassing or an additional nitrogen source. An endogenic origin of Titan’s nitrogen partially through NH3-ices is consistent with its initial fractionation of 14N/15N ≈ 166–172, or lower if photochemical removal was relevant for longer than the last ≈ 1000 Myr. Since this ratio is slightly above the ratio of cometary ammonia, some of Titan’s nitrogen might have originated from refractory organics.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12006
Author(s):  
Holly K.M. Brown ◽  
Margaret Rubega ◽  
Heidi M. Dierssen

Multiple lineages of birds have independently evolved foraging strategies that involve catching aquatic prey by striking at them through the water’s surface. Diurnal, visual predators that hunt across the air-water interface encounter several visual challenges, including sun glint, or reflection of sunlight by the water surface. Intense sun glint is common at the air-water interface, and it obscures visual cues from submerged prey. Visually-hunting, cross-media predators must therefore solve the problem of glint to hunt effectively. One obvious solution is to turn away from the sun, which would result in reduction of glint effects. However, turning too far will cast shadows over prey, causing them to flee. Therefore, we hypothesized that foraging herons would orient away from, but not directly opposite to the sun. Our ability to understand how predators achieve a solution to glint is limited by our ability to quantify the amount of glint that free-living predators are actually exposed to under different light conditions. Herons (Ardea spp.) are a good model system for answering questions about cross-media hunting because they are conspicuous, widely distributed, and forage throughout a variety of aquatic habitats, on a variety of submerged prey. To test our hypothesis, we employed radiative transfer modeling of water surface reflectance, drawn from optical oceanography, in a novel context to estimate the visual exposure to glint of free-living, actively foraging herons. We found evidence that Ardea spp. do not use body orientation to compensate for sun glint while foraging and therefore they must have some other, not yet understood, means of compensation, either anatomical or behavioral. Instead of facing away from the sun, herons tended to adjust their position to face into the wind at higher wind speeds. We suggest that radiative transfer modeling is a promising tool for elucidating the ecology and evolution of air-to-water foraging systems.


2019 ◽  
Vol 2019 (1) ◽  
pp. 48-66 ◽  
Author(s):  
Robin J. Hogan ◽  
Mark D. Fielding ◽  
Howard W. Barker ◽  
Najda Villefranque ◽  
Sophia A. K. Schäfer

AbstractSeveral mechanisms have previously been proposed to explain differences between the shortwave reflectance of realistic cloud scenes computed using the 1D independent column approximation (ICA) and 3D solutions of the radiative transfer equation. When the sun is low in the sky, interception of sunlight by cloud sides tends to increase reflectance relative to ICA estimates that neglect this effect. When the sun is high, 3D radiative transfer tends to make clouds less reflective, which we argue is explained by the mechanism of “entrapment” whereby horizontal transport of radiation beneath a cloud layer increases the chances, relative to the ICA, of light being absorbed by cloud or the surface. It is especially important for multilayered cloud scenes. We describe modifications to the previously described Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS) to represent different entrapment assumptions, and test their impact on 65 contrasting scenes from a cloud-resolving model. When entrapment is represented explicitly via a calculation of the mean horizontal distance traveled by reflected light, SPARTACUS predicts a mean “3D radiative effect” (the difference in top-of-atmosphere irradiances between 3D and ICA calculations) of 8.1 W m−2 for overhead sun. This is within 2% of broadband Monte Carlo calculations on the same scenes. The importance of entrapment is highlighted by the finding that the extreme assumptions in SPARTACUS of “zero entrapment” and “maximum entrapment” lead to corresponding mean 3D radiative effects of 1.7 and 19.6 W m−2, respectively.


Sign in / Sign up

Export Citation Format

Share Document