Visualization Of Neural Stem Cells For The Investigation Of Neural Development And Development Of Stem Cell Therapies

2006 ◽  
Vol 18 (8) ◽  
pp. 839 ◽  
Author(s):  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Sujoy K. Dhara ◽  
Brian A. Gerwe ◽  
David W. Machacek ◽  
...  

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.


2014 ◽  
Vol 175 ◽  
pp. 13-26 ◽  
Author(s):  
Yung-Kang Peng ◽  
Cathy N. P. Lui ◽  
Tsen-Hsuan Lin ◽  
Chen Chang ◽  
Pi-Tai Chou ◽  
...  

Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe3O4@SiO2(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe3O4@SiO2(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T2 magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Paulina Gapska ◽  
Maciej Kurpisz

There is a variety of mechanisms(s) factor(s) that may influence stem cell therapies for heart regeneration. Among the best candidates for stem cell source are: mesenchymal stem cells (also those isolated from adipose tissue), cardiac cell progenitors (CPC) and descendants of iPSC cells. iPSC/s can be potentially beneficial although their pluripotent induction has been still in question due to: low propagation efficacy, danger of genomic integration/instability, biological risk of current vector system teratoma formation etc. which have been discussed in this review. Optimization protocols are required in order to enhance stem cells resistance to pathological conditions that they may encounter in pathological organ and to increase their retention. Combination between gene transfer and stem cell therapy is now more often used in pre-clinical studies with the prospect of subsequent clinical trials. Complementary substances have been contemplated to support stem cell viability (mainly anti-inflammatory and anti- apoptotic agents), which have been tested in animal models with promising results. Integration of nanotechnology both for efficient stem cell imaging as well as with the aim to provide cell supporting scaffolds seem to be inevitable for further development of cellular therapies. The whole organ (heart) reconstruction as well as biodegradable scaffolds and scaffold-free cell sheets have been also outlined.


2017 ◽  
Author(s):  
Christos Papadimitriou ◽  
Mehmet I. Cosacak ◽  
Violeta Mashkaryan ◽  
Hilal Celikkaya ◽  
Laura Bray ◽  
...  

AbstractThree-dimensional models of human neural development and neurodegeneration are crucial when exploring stem-cell-based regenerative therapies in a tissue-mimetic manner. However, existing 3D culture systems are not sufficient to model the inherent plasticity of NSCs due to their ill-defined composition and lack of controllability of the physical properties. Adapting a glycosaminoglycan-based, cell-responsive hydrogel platform, we stimulated primary and induced human neural stem cells (NSCs) to manifest neurogenic plasticity and form extensive neuronal networks in vitro. The 3D cultures exhibited neurotransmitter responsiveness, electrophysiological activity, and tissue-specific extracellular matrix (ECM) deposition. By whole transcriptome sequencing, we identified that 3D cultures express mature neuronal markers, and reflect the in vivo make-up of mature cortical neurons compared to 2D cultures. Thus, our data suggest that our established 3D hydrogel culture supports the tissue-mimetic maturation of human neurons. We also exemplarily modeled neurodegenerative conditions by treating the cultures with Aβ42 peptide and observed the known human pathological effects of Alzheimer’s disease including reduced NSC proliferation, impaired neuronal network formation, synaptic loss and failure in ECM deposition as well as elevated Tau hyperphosphorylation and formation of neurofibrillary tangles. We determined the changes in transcriptomes of primary and induced NSC-derived neurons after Aβ42, providing a useful resource for further studies. Thus, our hydrogel-based human cortical 3D cell culture is a powerful platform for studying various aspects of neural development and neurodegeneration, as exemplified for Aβ42 toxicity and neurogenic stem cell plasticity.SignificanceNeural stem cells (NSC) are reservoir for new neurons in human brains, yet they fail to form neurons after neurodegeneration. Therefore, understanding the potential use of NSCs for stem cell-based regenerative therapies requires tissue-mimetic humanized experimental systems. We report the adaptation of a 3D bio-instructive hydrogel culture system where human NSCs form neurons that later form networks in a controlled microenvironment. We also modeled neurodegenerative toxicity by using Amyloid-beta4 peptide, a hallmark of Alzheimer’s disease, observed phenotypes reminiscent of human brains, and determined the global gene expression changes during development and degeneration of neurons. Thus, our reductionist humanized culture model will be an important tool to address NSC plasticity, neurogenicity, and network formation in health and disease.


Author(s):  
Qi Zhang ◽  
Xin-xing Wan ◽  
Xi-min Hu ◽  
Wen-juan Zhao ◽  
Xiao-xia Ban ◽  
...  

Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Adam C. Vandergriff ◽  
James Bizetto Meira de Andrade ◽  
Junnan Tang ◽  
M. Taylor Hensley ◽  
Jorge A. Piedrahita ◽  
...  

Despite the efficacy of cardiac stem cells (CSCs) for treatment of cardiomyopathies, there are many limitations to stem cell therapies. CSC-derived exosomes (CSC-XOs) have been shown to be responsible for a large portion of the regenerative effects of CSCs. Using a mouse model of doxorubicin induced dilated cardiomyopathy, we study the effects of systemic delivery of human CSC-XOs in mice. Mice receiving CSC-XOs showed improved heart function via echocardiography, as well as decreased apoptosis and fibrosis. In spite of using immunocompetent mice and human CSC-XOs, mice showed no adverse immune reaction. The use of CSC-XOs holds promise for overcoming the limitations of stem cells and improving cardiac therapies.


2019 ◽  
Vol 46 (3) ◽  
pp. E10 ◽  
Author(s):  
Michael C. Jin ◽  
Zachary A. Medress ◽  
Tej D. Azad ◽  
Vanessa M. Doulames ◽  
Anand Veeravagu

Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell–based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Navneet Kumar Dubey ◽  
Viraj Krishna Mishra ◽  
Rajni Dubey ◽  
Shabbir Syed-Abdul ◽  
Joseph R. Wang ◽  
...  

Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document