scholarly journals Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases

Author(s):  
Qi Zhang ◽  
Xin-xing Wan ◽  
Xi-min Hu ◽  
Wen-juan Zhao ◽  
Xiao-xia Ban ◽  
...  

Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.

Author(s):  
Hyun-Min Cho ◽  
Je-Yoel Cho

AbstractMassive death of cardiomyocytes is a major feature of cardiovascular diseases. Since the regenerative capacity of cardiomyocytes is limited, the regulation of their death has been receiving great attention. The cell death of cardiomyocytes is a complex mechanism that has not yet been clarified, and it is known to appear in various forms such as apoptosis, necrosis, etc. In ischemic heart disease, the apoptosis and necrosis of cardiomyocytes appear in two types of programmed forms (intrinsic and extrinsic pathways) and they account for a large portion of cell death. To repair damaged cardiomyocytes, diverse stem cell therapies have been attempted. However, despite the many positive effects, the low engraftment and survival rates have clearly limited the application of stem cells in clinical therapy. To solve these challenges, the introduction of the desired genes in stem cells can be used to enhance their capacity and improve their therapeutic efficiency. Moreover, as genome engineering technologies have advanced significantly, safer and more stable delivery of target genes and more accurate deletion of genes have become possible, which facilitates the genetic modification of stem cells. Accordingly, stem cell therapy for damaged cardiac tissue is expected to further improve. This review describes myocardial cell death, stem cell therapy for cardiac repair, and genome-editing technologies. In addition, we introduce recent stem cell therapies that incorporate genome-editing technologies in the myocardial infarction model.


2021 ◽  
Vol 2 (1) ◽  
pp. 143-158
Author(s):  
Sara Faour ◽  
Aarthi Ashok

Parkinson’s disease (PD) is referred to as a neurodegenerative disease which is a disease that targets specific brain regions and is characterized by neuronal death. PD is believed to be caused by the loss of nerve cells in the substantia nigra (SN), a dopamine releasing area (Dickson, 2012). Current treatments are directed at alleviating pain symptoms and slowing down the progression of disease, however, no cure currently exists. Recent advances in stem cell therapies raise new possibilities to treat neurodegenerative diseases. Stem cells have the ability to differentiate into neural cells, and thus, could potentially be used to restore neurogenesis and neuroplasticity (Lunn et al., 2011). There exist several cell types that can be applied in therapy including embryonic stem cells (ESCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). PD which has localized neural degeneration to the SN may serve as a better model for stem cell therapy and displays greater success when compared to other neurodegenerative diseases that spread to several brain regions (Vasic et al., 2019). This review aims to discuss the several approaches used in stem cell therapy as well as the current challenges and shortcomings of this cell-based therapy.


2019 ◽  
Vol 20 (6) ◽  
pp. 1420 ◽  
Author(s):  
Bernhard Wernly ◽  
Moritz Mirna ◽  
Richard Rezar ◽  
Christine Prodinger ◽  
Christian Jung ◽  
...  

Although reperfusion therapy has improved outcomes, acute myocardial infarction (AMI) is still associated with both significant mortality and morbidity. Once irreversible myocardial cell death due to ischemia and reperfusion sets in, scarring leads to reduction in left ventricular function and subsequent heart failure. Regenerative cardiovascular medicine experienced a boost in the early 2000s when regenerative effects of bone marrow stem cells in a murine model of AMI were described. Translation from an animal model to stem cell application in a clinical setting was rapid and the first large trials in humans suffering from AMI were conducted. However, high initial hopes were early shattered by inconsistent results of randomized clinical trials in patients suffering from AMI treated with stem cells. Hence, we provide an overview of both basic science and clinical trials carried out in regenerative cardiovascular therapies. Possible pitfalls in specific cell processing techniques and trial design are discussed as these factors influence both basic science and clinical outcomes. We address possible solutions. Alternative mechanisms and explanations for effects seen in both basic science and some clinical trials are discussed here, with special emphasis on paracrine mechanisms via growth factors, exosomes, and microRNAs. Based on these findings, we propose an outlook in which stem cell therapy, or therapeutic effects associated with stem cell therapy, such as paracrine mechanisms, might play an important role in the future. Optimizing stem cell processing and a better understanding of paracrine signaling as well as its effect on cardioprotection and remodeling after AMI might improve not only AMI research, but also our patients’ outcomes.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Fernando de Sá Silva ◽  
Paula Nascimento Almeida ◽  
João Vitor Paes Rettore ◽  
Claudinéia Pereira Maranduba ◽  
Camila Maurmann de Souza ◽  
...  

Stem cells, both embryonic and adult, due to the potential for application in tissue regeneration have been the target of interest to the world scientific community. In fact, stem cells can be considered revolutionary in the field of medicine, especially in the treatment of a wide range of human diseases. However, caution is needed in the clinical application of such cells and this is an issue that demands more studies. This paper will discuss some controversial issues of importance for achieving cell therapy safety and success. Particularly, the following aspects of stem cell biology will be presented: methods for stem cells culture, teratogenic or tumorigenic potential, cellular dose, proliferation, senescence, karyotyping, and immunosuppressive activity.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18668-18680 ◽  
Author(s):  
Hugh H. Chan ◽  
Connor A. Wathen ◽  
Ming Ni ◽  
Shuangmu Zhuo

We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.


Author(s):  
Nursuaidah Abdullah ◽  
Marjanu Hikmah Elias

Type 1 diabetes (T1D) is a deficiency in insulin production which is mainly due to loss of ?-cell pancreatic islets. Patients with T1D need to be given exogenous insulin regularly. While improvements in the delivery of insulin and glucose monitoring methods have been effective in improving patient safety, insulin therapy is not a cure and is often associated with complications and debilitating hypoglycaemic episodes. Meanwhile, pancreas or islet transplantation as a gold standard only promises temporary freedom from exogenous insulin and suffers from issues of its own. Stem cell therapy may provide a more permanent solution, given stem cells’ immunomodulatory characteristics and ability to self-renew and distinguish into specific cells. In this sense, the therapeutic potentials of stem cells are addressed in this study. These stem cells cover a wide range of treatments for T1D including embryonic stem cells, induced pluripotent stem cells, bone-marrow derived hematopoietic stem cells and multipotent mesenchymal stromal cells. The challenges faced by the current stem cell transplant in T1D treatment and Islamic viewpoints regarding ethics in stem cell research and therapy are also discussed. In conclusion, stem cell therapy offers a safe and efficient alternative treatment for T1D. However, besides the fatwa from Fatwa Committee of Selangor, the lack of Malaysian stem cells ethics should be further addressed.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


2020 ◽  
pp. 1-2
Author(s):  
Shantha A R

Stem cells are the building blocks of life. They have remarkable potential to regenerate and develop into many different cell types in the body during early life and growth. They are also a class of undifferentiated cells that are able to be differentiated into specialized cells types. Stem cells are characterized by certain features such as totipotency, pluripotency, multipotency, oligopotent and unipotency. The history of stem cell research had an embryonic beginning in the mid 1800s with the discovery that few cells could generate other cells. In the 1900s the first stem cells were discovered when it was found that cells generate blood cells. Nowadays, stem cell therapy is under research and till now, a very few stem cell therapies have been regarded as safe and successful. It is also found that stem cell therapy cast a number of side effects too. The cost of the procedure too is expensive and is not easily affordable.


Author(s):  
Alireza Ebrahimi ◽  
Hanie Ahmadi ◽  
Zahra Pourfraidon Ghasrodashti ◽  
Nader Tanide ◽  
Reza Shahriarirad ◽  
...  

Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for  uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells,  a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.  


2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


Sign in / Sign up

Export Citation Format

Share Document