Mode II fatigue and reflective cracking performance of GlasGrid-reinforced asphalt concrete under repeated loading

2014 ◽  
pp. 1893-1902 ◽  
Author(s):  
Amirshayan Safavizadeh ◽  
Y Kim
2009 ◽  
Vol 79-82 ◽  
pp. 1149-1152
Author(s):  
Hong Bing Guo ◽  
Shuan Fa Chen

The reflective cracking in asphalt surface is a technical problem that exists in the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure, how to control its emergence and development is still a major problem for road engineering. At present, researches on the anti-cracking performance for Open-graded Large Stone asphalt Mix (OLSM) in China almost remain in the test road observations, very few study the mechanism of its anti-cracking from the mechanical point. Aiming at this problem, a method of using OLSM as the cracking relief layer is proposed, large mineral aggregate, low asphalt content and a great deal of void in OLSM can dissipate or absorb stress and strain around the crack. The 3-D finite element method is used to analyze the crack-alleviating layer of ordinary asphalt concrete and OLSM, and the large-scale commercial finite element software of ABAQUS is used to do numerical simulation analysis for the lean concrete base asphalt pavement structure with OLSM, the analysis result indicates that temperature-load coupling stress of OLSM are less than that of ordinary asphalt concrete. Depending on the test road on an expressway, research on the anti-crack mechanism of OLSM has been conducted. The investigation of the test road and the result of the theoretical calculation indicate that OLSM can prevent lean concrete base asphalt pavement from the reflective cracking effectively, OLSM has good anti-cracking performance, it is an effective material to alleviate the reflective cracking. As the crack-alleviating layer, OLSM can significantly enhance the anti-cracking ability of the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure.


2021 ◽  
Vol 13 (17) ◽  
pp. 9499
Author(s):  
Fujin Hou ◽  
Tao Li ◽  
Xu Li ◽  
Yunliang Li ◽  
Meng Guo

In order to analyze the anti-reflective cracking performance of a full-depth asphalt pavement and study the propagation process of a reflection crack and its influencing factors, a mechanical model of pavement structural crack analysis was established based on the ABAQUS finite element software and the extended finite element method (XFEM). Based on two different loading modes of three-point bending and direct tension, the propagation process of a reflection crack is analyzed. The results show that the anti-reflective cracking performance of a full-depth asphalt pavement is better than that of a semi-rigid base pavement structure, and the loading mode II based on direct tension is more consistent with the propagation mechanism of pavement reflection cracks, while the loading mode II is more suitable for analyzing the anti-reflective cracking performance of the pavement structure. Appropriately reducing the elastic modulus of the stress-absorbing layer can significantly improve the anti-reflective cracking performance of the full-depth asphalt pavement.


Author(s):  
Cristian Cocconcelli ◽  
Bongsuk Park ◽  
Jian Zou ◽  
George Lopp ◽  
Reynaldo Roque

Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


2013 ◽  
Vol 40 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Guy Doré ◽  
Jonas Depatie

The use of recycled asphalt pavement (RAP) aggregates as replacement for new materials in the pavement base weakens the layer in regards to the resistance to permanent deformation under repeated loading. A mechanistic based design procedure is proposed to ensure that base layers containing RAP particles have a similar rutting behaviour to base layers made of virgin aggregates. The design procedure allows calculating an asphalt concrete thickness increase that is based on permanent deformation behaviour of base materials. The calculation approach is based on multistage triaxial permanent deformation tests performed on granular material samples with varied RAP content. The tests allowed proposing an equation that relates permanent strain rate, RAP content, and deviatoric stress, which is the basis of the design procedure. Design charts are proposed to select adequate thickness increase for the asphalt concrete layer according to the expected RAP content in the base layer and asphalt concrete modulus.


Sign in / Sign up

Export Citation Format

Share Document