scholarly journals The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy

Keyword(s):  
2021 ◽  
Author(s):  
Bowen Ding ◽  
Bun Chan ◽  
Nicholas Proschogo ◽  
Marcello Solomon ◽  
Cameron Kepert ◽  
...  

Innovative and robust photosensitisation materials play a cardinal role in advancing the combined effort towards efficient solar energy harvesting. Here, we demonstrate the photocathode functionality of a Metal-Organic Framework (MOF)...


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 611 ◽  
Author(s):  
Anita Haeussler ◽  
Stéphane Abanades ◽  
Julien Jouannaux ◽  
Anne Julbe

Due to the requirement to develop carbon-free energy, solar energy conversion into chemical energy carriers is a promising solution. Thermochemical fuel production cycles are particularly interesting because they can convert carbon dioxide or water into CO or H2 with concentrated solar energy as a high-temperature process heat source. This process further valorizes and upgrades carbon dioxide into valuable and storable fuels. Development of redox active catalysts is the key challenge for the success of thermochemical cycles for solar-driven H2O and CO2 splitting. Ultimately, the achievement of economically viable solar fuel production relies on increasing the attainable solar-to-fuel energy conversion efficiency. This necessitates the discovery of novel redox-active and thermally-stable materials able to split H2O and CO2 with both high-fuel productivities and chemical conversion rates. Perovskites have recently emerged as promising reactive materials for this application as they feature high non-stoichiometric oxygen exchange capacities and diffusion rates while maintaining their crystallographic structure during cycling over a wide range of operating conditions and reduction extents. This paper provides an overview of the best performing perovskite formulations considered in recent studies, with special focus on their non-stoichiometry extent, their ability to produce solar fuel with high yield and performance stability, and the different methods developed to study the reaction kinetics.


2010 ◽  
Vol 35 (10) ◽  
pp. 4925-4932 ◽  
Author(s):  
Xin-Rong Zhang ◽  
Hiroshi Yamaguchi ◽  
Yuhui Cao

Author(s):  
Dieter F. Ihrig ◽  
H. Michael Heise ◽  
Ulrich Brunert ◽  
Martin Poschmann ◽  
Ruediger Kuckuk ◽  
...  

Biomass production by micro-algae is by a factor of 10 more efficient than by plants, by which an economic process of solar energy harvesting can be established. Owing to the very low dry mass content of algal suspensions, the most promising way of their conversion to a high exoergic and transportable form of energy is the anaerobic production of biogas. On account of this, we are developing such processes including a micro-algal reactor, methods for micro-algal cell separation and biomass treatment, and a subsequent two-stage anaerobic fermentation process. First results from parts of this development work are shown. The continuous feeding of the anaerobic process over several weeks using micro-algal biomass is discussed in more details. The biogas is composed of methane, higher hydrocarbons, carbon dioxide, and hydrogen sulphide. Using steam reforming, it can be converted to a mixture of carbon dioxide and hydrogen. These gases can be separated using membrane technology. It is possible to form a closed carbon cycle by recycling the carbon dioxide to the micro-algal process. The transportable and storable hydrogen product is a valuable energy source and can be converted to electrical energy and heat using fuel cells. The simulation of such a process will be explicated.


Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2507-2514 ◽  
Author(s):  
Yipeng Bao ◽  
Jin Wang ◽  
Qi Wang ◽  
Xiaofeng Cui ◽  
Ran Long ◽  
...  

Harvesting solar energy to convert carbon dioxide (CO2) into fossil fuels shows great promise to solve the current global problems of energy crisis and climate change.


2009 ◽  
Vol 23 (31) ◽  
pp. 5849-5857 ◽  
Author(s):  
CONG WANG ◽  
MENGYAN SHEN ◽  
HAIBIN HUO ◽  
HAIZHOU REN ◽  
FADONG YAN ◽  
...  

Large-scale replication of the natural process of photosynthesis is a crucial subject of storing solar energy and saving our environment. Here, we report femtosecond laser induced self-assembled metal nanostructure arrays, which are easily mass producible on earth-abundant metals, can directly synthesize liquid and solid hydrocarbon compounds from carbon dioxide, water, and sunlight at a production rate of more than 1 × 105 μ L/(gh) that is significantly (103–106 times) higher than those in previous studies.1,2 The efficiency for storing solar energy of the photosynthesis is about 10% in the present simple experimental setup which can be further improved. Moreover, different from previous artificial photosynthesis works, this phenomenon presents a new mechanism that, through a surface-enhanced photodissociation process, nature-like photosynthesis can be performed artificially.


Sign in / Sign up

Export Citation Format

Share Document