Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO2 reduction

Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2507-2514 ◽  
Author(s):  
Yipeng Bao ◽  
Jin Wang ◽  
Qi Wang ◽  
Xiaofeng Cui ◽  
Ran Long ◽  
...  

Harvesting solar energy to convert carbon dioxide (CO2) into fossil fuels shows great promise to solve the current global problems of energy crisis and climate change.

Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Shao ◽  
Xiaodong Zhang

Carbon dioxide (CO2) from the excessive consumption of fossil fuels has exhibited a huge threat to the planet’s ecosystem. Electrocatalytic CO2 reduction into value-added chemicals have been regarded as a...


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87-113
Author(s):  
Rami J. Batrice ◽  
John C. Gordon

Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


Author(s):  
Yinyi Ma ◽  
Zemin Zhang ◽  
Xiao Jiang ◽  
Rongke Sun ◽  
Mingzheng Xie ◽  
...  

Photocatalytic reduction of carbon dioxide into chemical fuels has great practical significance in solving energy crisis and environmental pollution, but remains a big challenge owing to its low light absorption...


Author(s):  
Susan M. Gaines ◽  
Geoffrey Eglinton ◽  
Jürgen Rullkötter

For many of us who studied and came of age in the last two decades of the twentieth century, there was nothing more prosaic, lacking in romance, and less worthy of our scientific curiosity than petroleum. The basic questions about its composition and origin had been answered, and it was no longer one of Nature’s secrets luring us to discovery, but rather the dull stuff of industry and business, money and technology. Some of us even imagined, naively, that we would witness the end of the age of fossil fuels: they were the bane of modern man, the source of pollution, environmental disaster, and climate change that threatened to disrupt ecosystems and civilizations around the entire globe. Finding new reserves, we reasoned, would only forestall the inevitable, or exacerbate the havoc. But when Jürgen joined Germany’s government-funded Institute of Petroleum and Organic Geochemistry in 1975, there was still a sense of mission in finding new reserves. The energy crisis of the early 1970s had created a heightened awareness of the value of fossil fuels and the need for conservation, but the accepted wisdom remained that oil was the key to the future and well-being of civilization. And the chemistry, it seems, was anything but banal—it was, in fact, leading not just to a better success rate in finding new reserves of oil, but also to a new understanding of life that no one had foreseen. Certainly for Geoff and the generations of organic chemists that came before him, the oils that occasionally seeped out of a crack in a rock, or came spouting out of the earth if one drilled a hole in the right place, were as intriguing as the life some said they came from. Liquid from a solid, organic from mineral, black or brown or dark red, it was as if blood were oozing from stone, an enigma that inspired inquiry from scientists long before it found its place among man’s most coveted commodities.


2005 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Roger J. Francey

Environmental Context.Excessive levels of carbon dioxide are accumulating in the atmosphere, principally from burning fossil fuels. The gas is linked to the enhanced greenhouse effect and climate change, and is thus monitored carefully, along with other trace gases that reflect human activity.The rate of growth of carbon dioxide has increased gradually over the past century, and more rapidly in the last decade. Teasing out fossil emissions from changes due to wildfires and to natural exchange with plants and oceans guide global attempts in reducing emissions.


2013 ◽  
Vol 764 ◽  
pp. 1-82 ◽  
Author(s):  
Ibram Ganesh

This article reviews the literature related to the direct uses of CO2and its conversion into various value added chemicals including high energy density liquid fuels such as methanol. The increase in the direct uses of CO2and its conversion into potential chemical commodities is very important as it directly contributes to the mitigation of CO2related global warming problem. The method being followed at present in several countries to reduce the CO2associated global warming is capturing of CO2at its major outlets using monoethanolamine based solution absorption technique followed by storing it in safe places such as, oceans, depleted coal seams, etc., (i.e., carbon dioxide capturing and storing in safe places, CCS process). This is called as CO2sequestration. Although, the CCS process is the most understood and immediate option to mitigate the global warming problem, it is considerably expensive and has become a burden for those countries, which are practicing this process. The other alternative and most beneficial way of mitigating this global warming problem is to convert the captured CO2into certain value added bulk chemicals instead of disposing it. Conversion of CO2into methanol has been identified as one of such cost effective ways of mitigating global warming problem. Further, if H2is produced from exclusively water using only solar energy instead of any fossil fuel based energy, and is used to convert CO2into methanol there are three major benefits: i) it contributes greatly to the global warming mitigation problem, ii) it greatly saves fossil fuels as methanol production from CO2could be an excellent sustainable and renewable energy resource, and iii) as on today, there is no better process than this to store energy in a more convenient and highly usable form of high energy density liquid fuel. Not only methanol, several other potential chemicals and value added chemical intermediates can be produced from CO2. In this article, i) synthesis of several commodity chemicals including poly and cyclic-carbonates, sodium carbonate and dimethyl carbonate, carbamates, urea, vicinal diamines, 2-arylsuccinic acids, dimethyl ether, methanol, various hydrocarbons, acetic acid, formaldehyde, formic acid, lower alkanes, etc., from CO2, ii) the several direct uses of CO2, and iii) the importance of producing methanol from CO2using exclusively solar energy are presented, discussed and summarized by citing all the relevant and important references.


2016 ◽  
Vol 58 ◽  
pp. 35-41
Author(s):  
Irfan Mahmood ◽  
Muhammad Farooq Iqbal ◽  
Muhammad Imran Shahzad ◽  
Ahmed Waqas ◽  
Luqman Atique

Carbon dioxide (CO2), Methane (CH4) are two most potent greenhouse gases and are major source of climate change. Human activities particularly fossil fuels burning have caused considerable increase in atmospheric concentrations of greenhouse gases. CO2contributes 60% of anthropogenic greenhouse effect whereas CH4contributes 15%. Ice core records also show that the concentrations of Carbon dioxide and methane have increased substantially. The emission of these gases alters the Earth’s energy budget and are drivers of climate change. In the present study, atmospheric concentration of CO2and CH4over Pakistan is measured using Atmospheric Infrared Sounder (AIRS). Time series and time averaged maps are prepared to measure the concentrations of CO2and CH4. The results show considerable increase in concentration of Carbon dioxide and methane. The substantial increase in these concentrations can affect human health, earth radiative balance and can damage crops.


2016 ◽  
Vol 855 ◽  
pp. 58-77 ◽  
Author(s):  
Rakshit Ameta ◽  
Dipti Soni ◽  
Surbhi Benjamin ◽  
Neelu Chouhan ◽  
Suresh C. Ameta

World is presently facing two major problems: Energy crisis and ever increasing environmental pollution as the fossil fuels used today are polluting the environment and these resources are limited only for a few coming decades. nanosized materials are being used these days to provide alternative energy sources to fossil fuels, which is environmentally clean also. The development of newer photocatalytic nanomaterials will enable us to produce and store solar energy in the form of hydrogen. Hydrogen has been advocated as the fuel of future and it can be produced by photo-splitting of water in presence of photocatalytic materials. nanosized photocatalytic materials have also been utilized in solar cells and photocatalytic reduction of carbon dioxide (a step towards artificial photosynthesis). Although, the use of nanosized photocatalytic materials has long miles to go to compete with present day technology (Photovoltaics and use of fossil fules), but there is lot of hopes from this kind of material in years to come. This chapter deals with use of nanomaterials in conversion of solar energy into electricity, photogeneration of hydrogen, and photocatalytic reduction of carbon dioxide. Presently, majority of photovoltaic power comes from bulk semiconductors, and only a limited use has been made of nanosized semiconductors, but there is likely U-turn in coming decades so that nanosemiconductors will have an edge over bulk semiconductors.


Author(s):  
Filippo Giorgi

This contribution presents the various pieces of evidence which bring the scientific community to conclude that global warming is happening and it is mostly due to anthropogenic emissions of greenhouse gases, mainly carbon dioxide and methane, deriving from the use of fossil fuels and some intensive agricultural practices. The main climatic changes associated with global warming are then discussed, along with the main model-derived future climate scenarios and the impacts that climate change can have on different socioeconomic sectors. Finally, the response policies to global warming are described, and in particular the concepts of adaptation and mitigaziotn (reduction of greenhouse gas emissions).


Sign in / Sign up

Export Citation Format

Share Document