Irrigation Water Requirements of Green Pea

2015 ◽  
Vol 7 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Ali Fares ◽  
Ripendra Awal ◽  
Samira Fares ◽  
Alton B. Johnson ◽  
Hector Valenzuela

The impact of potential future climate change scenarios on the irrigation water requirements (IRRs) of two major agricultural crops (coffee and seed corn) in Hawai'i was studied using the Irrigation Management System (IManSys) model. In addition to IRRs calculations, IManSys calculates runoff, deep percolation, canopy interception, and effective rainfall based on plant growth parameters, site specific soil hydrological properties, irrigation system efficiency, and long-term daily weather data. Irrigation water requirements of two crops were simulated using historical climate data and different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and +6.4 °C) and precipitation (±5, ±10 and ±20%) chosen based on the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under reference, B1, A1B1 and A1F1 emission scenarios. IRRs decreased as CO2 emission increased. The average percentage decrease in IRRs for seed corn is higher than that of coffee. However, runoff, rain canopy interception, and deep percolation below the root zone increased as precipitation increased. Canopy interception and drainage increased with increased CO2 emission. Evapotranspiration responded positively to air temperature rise, and as a result, IRRs increased as well. Further studies using crop models will predict crop yield responses to these different irrigation scenarios.


2007 ◽  
Vol 7 (3) ◽  
pp. 149-159 ◽  
Author(s):  
J. A. Rodríguez Díaz ◽  
E. K. Weatherhead ◽  
J. W. Knox ◽  
E. Camacho

2021 ◽  
Vol 11 (21) ◽  
pp. 10379
Author(s):  
Mohammed El Hafyani ◽  
Ali Essahlaoui ◽  
Kimberley Fung-Loy ◽  
Jason A. Hubbart ◽  
Anton Van Rompaey

This work was undertaken to develop a low-cost but reliable assessment method for agricultural water requirements in semi-arid locations based on remote sensing data/techniques. In semi-arid locations, water resources are often limited, and long-term water consumption may exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in these locations must include tools that facilitate assessment of the impact of potential future land use changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case study application. Land use practices were mapped at the thematic resolution of individual crops, using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees, and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest (RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and 84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of 25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively, representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used to overlay satellite data images with those of climate for agricultural water resources management in the region. This process facilitated estimations of irrigation water requirements for all crop types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm and 150 mm, respectively.


Author(s):  
Jesús Garrido-Rubio ◽  
Alfonso Calera Belmonte ◽  
Lorena Fraile Enguita ◽  
Irene Arellano Alcázar ◽  
Mario Belmonte Mancebo ◽  
...  

Abstract. Temporal series maps of irrigated areas, and the corresponding irrigation water requirements based on remote sensing, is a recognized tool contributing to water governance at different scales, from water user associations to whole river basin districts. These thematic cartographies offer a first estimation of the crop irrigation requirements, and a biophysical based approach of the temporal and spatial distribution of the crop water use in the cultivated areas. This work describes the operational application of these methodologies, providing valuable information for water governance and management purposes. The basic products obtained in the whole Spanish part of the Iberian Peninsula during the period 2014–2017 were: (i) annual maps of irrigated crops based on time series of multispectral satellite imagery; and (ii) the direct remote sensing-based water accounting, by quantifying agricultural water flows (e.g. rainfall, irrigation, evapotranspiration, drainage and recharge), through a remote sensing-based soil water balance. Hence this paper provides a remote sensing based water accounting approach, which relies on dense time series of multispectral imagery acquired by the multisensor constellation arranged by Landsat 8 and Sentinel-2 satellites, jointly with meteorological data and agronomic knowledge. Then, based on these purpose and approach, annual and monthly maps of net irrigation water requirements have been elaborated at the most practical spatial and temporal scales for water governance purposes over big areas such river basin districts. This work summarizes the methodologies used and discuss the technical and non-technical feasibility of the proposed approach.


2020 ◽  
Vol 4 (4) ◽  
pp. 412-421
Author(s):  
Mahendra Rizqi ◽  
Muhammad Yasar Yasar ◽  
Dewi Sri Jayanti

Abstrak. Salah satu usaha peningkatan produksi pangan khususnya padi adalah tersedianya air irigasi di areal sawah sesuai dengan kebutuhan. Kebutuhan air yang diperlukan  pada areal irigasi besarnya bervariasi sesuai keadaan untuk memenuhi kebutuhan evapotranspirasi, kehilangan air, kebutuhan air untuk tanaman dengan memperhatikan jumlah air yang diberikan oleh alam melalui hujan dan kontribusi air tanah. Pengaplikasian CROPWAT 8.0 ini sangat membantu dalam pengelolaan data sehingga menghasilkan data yang dapat digunakan. Tujuan penelitian ini adalah untuk menghitung kebutuhan air irigasi pada Daerah Irigasi Krueng Jreu dengan menggunakan software CROPWAT 8.0. Metode penelitian adalah menentukan parameter, pengumpulan data dan pengolahan data.  Data yang digunakan dalam penelitian ini adalah data luas areal yang dialiri, data-data untuk menghitung evapotranspirasi meliputi temperatur, kelembaban relatif, kecepatan angin, lama penyinaran matahari, curah hujan, pola dan jadwal tanam yang dianjurkan di daerah penelitian. Hasil penelitian yang telah dilakukan diperoleh  Nilai evapotranspirasi potensial (ET0)  rata-rata  di Daerah Irigasi Krueng Jreu adalah sebesar 3,75 mm/hari, curah hujan efektif (Re) rata-rata di Daerah Irigasi Krueng Jreu adalah sebesar 3,09 mm/hari, kebutuhan air untuk penyiapan lahan adalah sebesar 11,35 mm/hari untuk Bulan November dan sebesar 11,71 mm/hari untuk Bulan Mei, kebutuhan bersih air di sawah (NFR) untuk padi rendeng dan padi gadu yaitu sebesar  11,22 mm/hari dan 25,34 mm/hari, dan kebutuhan air pada pintu pengambilan (DR) untuk padi rendeng dan padi gadu yaitu sebesar 17,27 mm/hari dan 38,98 mm/hari. Kebutuhan air irigasi di Darah Irigasi Krueng Jreu dengan total luas area sebesar 3.287 ha dengan kebutuhan air irigasi pola tanam padi-padi yang dimulai awal pengolahan lahan pada awal Bulan November maka didapatkan kebutuhan air irigasi maksimal yaitu terjadi pada Bulan Juli dengan perhitungan CROPWAT yaitu sebesar 14,9 m3/detik dan untuk perhitungan manual yaitu sebesar 6,26 m3/detik. Kebutuhan air irigasi minimum yaitu terjadi pada Bulan Desember dengan perhitungan CROPWAT yaitu sebesar 0,00 m3/detik dan perhitungan manual yaitu sebesar 0,45 m3/detik.Analysis of Irrigation Water Requirement Using CROPWAT 8.0 in Krueng Jreu Irrigation Area  of Aceh Besar RegencyAbstract. One of the efforts to increase food production, especially rice, is the availability of irrigation water in paddy fields according to their needs. The required water needs in the area of irrigation varies according the State needs for evapotranspiration, water loss, water needs for plants with attention to the amount of water given by nature through the rain and the contribution of groundwater. The application of  Cropwat 8.0 is very helpful in managing data so as to produce data that can be used. The purpose of this study was to calculate irrigation water requirements in the Krueng Jreu Irrigation Area using Cropwat 8.0 software. The research method is determining parameters, data collection and data processing. The data used in this study is the data area that is flowed, the data for calculating evapotranspiration include: temperature, relative humidity, wind speed, duration of solar radiation, rainfall, patterns, and planting schedules recommended in the study area. Based on the results of the research that has been carried out, it can be concluded as follows: the average evapotranspiration value (ET0) in the Krueng Jreu Irrigation Area is 3,75 mm/day, the effective rainfall (Re) in the Krueng Jreu Irrigation Area is amounting to 3,09 mm/day, water requirements for land preparation of 11,35 mm/day in November and 11,71 mm/day in Mei, clean water requirements in rice fields (NFR) for rendeng rice and gadu rice which amounted to 11,22 mm/day and 25,34 mm/day, and water requirements on the retrieval gate (DR) for rendeng rice and gadu rice were equal to 17,27 mm/day and 38,98 mm/day. Irrigation water needs in Krueng Jreu Irrigation Blood with a total area of 3.287 ha with irrigation water requirements for rice-paddy cropping patterns that were started at the beginning of land processing at the beginning of November the maximum irrigation water needs were obtained in July with  Cropwat calculations that is equal to 14,9 m3/second and for manual calculations amounting to 6,26 m3/sec. For minimum irrigation water needs, that occurs in December with a Cropwat calculation is 0,00 m3/second and manual calculation of 0,45 m3/sec.


2015 ◽  
Vol 12 (8) ◽  
pp. 8459-8504 ◽  
Author(s):  
M. Fader ◽  
S. Shi ◽  
W. von Bloh ◽  
A. Bondeau ◽  
W. Cramer

Abstract. Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.


2017 ◽  
Author(s):  
◽  
Akinola Mayowa Ikudayisi

Water is an essential natural resource for human existence and survival on the earth. South Africa, a water stressed country, allocates a high percentage of its available consumptive water use to irrigation. Therefore, it is necessary that we optimize water use in order to enhance food security. This study presents the development of mathematical models for irrigation scheduling of crops, optimal irrigation water release and crop yields in Vaal Harts irrigation scheme (VIS) of South Africa. For efficient irrigation water management, an accurate estimation of reference evapotranspiration (ETₒ) should be carried out. However, due to non-availability of enough historical data for the study area, mathematical models were developed to estimate ETₒ. A 20-year monthly meteorological data was collected and analysed using two data–driven modeling techniques namely principal component analysis (PCA) and adaptive neuro-fuzzy inference systems (ANFIS). Furthermore, an artificial neural network (ANN) model was developed for real time prediction of future ETₒ for the study area. The real time irrigation scheduling of potatoes was developed using a crop growth simulation model called CROPWAT. It was used to determine the crop water productivity (CWP), which is a determinant of the relationship between water applied and crop yield. Finally, a new and novel evolutionary multi-objective optimization algorithm called combined Pareto multi-objective differential evolution (CPMDE) was applied to optimize irrigation water use and crop yield on the VIS farmland. The net irrigation benefit, land area and irrigation water use of maize, potatoes and groundnut were optimized. Results obtained show that ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity have less significance on the value of ETₒ. Also, ANN models with one hidden layer showed better predictive performance compared with other considered configurations. A 5-day time step irrigation schedule data and graphs showing the crop water requirements and irrigation water requirements was generated. This would enable farmers know when, where, and how much water to apply to a given farmland. Finally, the employed CPMDE optimization algorithm produced a set of non-dominated Pareto optimal solutions. The best solution suggests that maize, groundnut and potatoes should be planted on 403543.44 m2, 181542.00 m2 and 352876.05 m2areas of land respectively. This solution generates a total net benefit of ZAR 767,961.49, total planting area of 937961.49 m2 and irrigation water volume of 391,061.52 m3. Among the three crops optimized, maize has the greatest land area, followed by potatoes and groundnut. This shows that maize is more profitable than potatoes and groundnut with respect to crop yield and water use in the study area.


Sign in / Sign up

Export Citation Format

Share Document