Cracks’ evolution characteristics of remolded expansive soils in the soaking and loading process

Author(s):  
Z Yao ◽  
Z Chen ◽  
W Li ◽  
L Su ◽  
Q Miao ◽  
...  
2014 ◽  
Vol 29 (2) ◽  
pp. 201-210
Author(s):  
Ari Isokangas ◽  
Kari Ala-Kaila ◽  
Markku Ohenoja ◽  
Aki Sorsa ◽  
Kauko Leiviskä

Abstract The purpose of this paper is to analyse the log loading process of wood room, which is typically the first processing unit in pulp and paper mills. The aim is to improve the log loading process to obtain production with a constant log flow of well de-iced logs to the debarking drum. This way it is possible to reduce costs and enhance product quality. The research was carried out utilising a log loading simulator. The parameters of the simulation model were selected on the basis of process observations on a mill. The results indicate that it is essential to adjust the process and equipment parameters, raw material properties and truck loader operation together in order to reach the target capacity with minimum costs. Especially the speed of the infeed conveyor affects all performance criteria and should be selected carefully. In addition, wood yard logistics and raw material properties have a remarkable effect on the wood room performance. The results can be utilised in mills to allow the upper level control perform in a planned way so that small wood loss and good product quality can be obtained.


Author(s):  
Masoud H. Bonab ◽  
Fariba Behrooz Sarand ◽  
Majid Farrin

2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


2021 ◽  
Vol 122 ◽  
pp. 107302
Author(s):  
Jiafeng Liu ◽  
Limin Jiao ◽  
Boen Zhang ◽  
Gang Xu ◽  
Ludi Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document