Resilient modulus – soil suction correlations for two subgrade soils from China

Author(s):  
Z Han ◽  
S Vanapalli
Author(s):  
Shu-Rong Yang ◽  
Wei-Hsing Huang ◽  
Yu-Tsung Tai

The variations of resilient modulus with the postconstruction moisture content and soil suction for cohesive subgrade soils were evaluated. In particular, the effects of relative compaction of the subgrade on the suction and resilient modulus were investigated. To simulate subgrade soils at in-service conditions, soil specimens were compacted at various relative compactions and optimum moisture content and then saturated to equilibrium moisture content to test for resilient modulus and soil suction. The filter paper method was used to measure the total and matric suctions of two cohesive soils. Test findings demonstrated that resilient modulus correlated better with the matric suction than with total suction. Matric suction was found to be a key parameter for predicting the resilient modulus of cohesive subgrade soils. A prediction model incorporating deviator stress and matric suction for subgrade soil resilient modulus was established.


Author(s):  
Andrew G. Heydinger

One objective of the FHWA’s Long-Term Pavement Performance (LTPP) program is to determine climatic effects on pavement performance. The LTPP instrumentation program includes seasonal monitoring program (SMP) instrumentation to monitor the seasonal variations of moisture, temperature, and frost penetration. Findings from the SMP instrumentation are to be incorporated into future pavement design procedures. Data from SMP instrumentation at the Ohio Strategic Highway Research Program Test Road (US-23, Delaware County, Ohio) and other reported results were analyzed to develop empirical equations. General expressions for the seasonal variations of average daily air temperature and variations of temperature and moisture in the fine-grained subgrade soil at the test site are presented. An expression for the seasonal variation of resilient modulus was derived. Average monthly weighting factors that can be used for pavement design were computed. Other factors such as frost penetration, depth of water table, and drainage conditions are discussed.


2020 ◽  
Vol 32 (9) ◽  
pp. 06020011
Author(s):  
Behnam Ghorbani ◽  
Arul Arulrajah ◽  
Guillermo Narsilio ◽  
Suksun Horpibulsuk ◽  
Myint Win Bo

2013 ◽  
Vol 723 ◽  
pp. 527-534
Author(s):  
Shu Rong Yang ◽  
Wei Hsing Huang ◽  
Shao Hung Chung

An investigation was conducted to determine the effects of temperature, compaction water content, and compaction efforts on soil suction of two expansive subgrade soils. For this purpose, two expansive soils were statically compacted at target water contents ranging from 5% to 20%. This made it possible to explore a broad spectrum of compaction conditions. Filter paper method and thermocouple psychrometer were used to measure soil suction at temperatures ranging from 10°C to 60°C. Experimental results show that compaction water content, compaction effort, and temperature have influences on soil suction. As water content increases, the influences of compaction effort and temperature on suction become less significant. Finally multiple regression formulations for predicting the soil suction of as-compacted clayey soil were established.


Sign in / Sign up

Export Citation Format

Share Document