Mammary Cancer Promotion and MAPK Activation Associated With Consumption of a Corn Oil-Based High-Fat Diet

1999 ◽  
Vol 34 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Zaisen Wang ◽  
Hongying Pei ◽  
Mark Kaeck ◽  
Junxuan Lu
2014 ◽  
Vol 306 (7) ◽  
pp. R499-R509 ◽  
Author(s):  
Yada Treesukosol ◽  
Bo Sun ◽  
Alexander A. Moghadam ◽  
Nu-Chu Liang ◽  
Kellie L. Tamashiro ◽  
...  

Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.


1999 ◽  
Vol 86 (4) ◽  
pp. 1374-1380 ◽  
Author(s):  
Deborah A. Podolin ◽  
Yuren Wei ◽  
Michael J. Pagliassotti

The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St ( n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Rawhen using [3-3H]glucose, glycerol Rawhen using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly ( P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 ± 659 m/day) and HFEx (3,581 ± 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra(μmol/min) were higher ( P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of3H in C-2 to C-6 of glucose from3H2O (estimate of Gneo from pyruvate) was also higher ( P < 0.05) in HF ( n = 5) and HFEx ( n = 5), compared with St ( n = 5) and StEx ( n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased ( P< 0.05) glycerol Rawhen normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ramay contribute to the high-fat diet-induced increase in Gneo.


1999 ◽  
Vol 277 (4) ◽  
pp. R1144-R1151 ◽  
Author(s):  
Gary J. Schwartz ◽  
Andrew Whitney ◽  
Chris Skoglund ◽  
Thomas W. Castonguay ◽  
Timothy H. Moran

Adult Otsuka Long-Evans Tokushima fatty (OLETF) rats lack functional cholecystokinin A (CCK-A) receptors, are diabetic, hyperphagic, and obese, and have patterns of ingestion consistent with a satiety deficit secondary to CCK insensitivity. Because dietary fat potently stimulates CCK release, we examined how dietary fat modulates feeding in adult male OLETF rats and their lean [Long-Evans Tokushima (LETO)] controls. High-fat feeding produced sustained overconsumption of high-fat diet (30% corn oil in powdered chow) over a 3-wk period in OLETF but not LETO rats. We then assessed the ability of gastric gavage (5 ml, 1–2 kcal/ml × 15 s) or duodenal preloads (1 kcal/ml, 0.44 ml/min × 10 min) of liquid carbohydrate (glucose), protein (peptone), or fat (Intralipid) to suppress subsequent 30-min 12.5% glucose intake in both strains. In OLETF rats, gastric and duodenal fat preloads were significantly less effective in suppressing subsequent intake than were equicaloric peptone or glucose. These results demonstrate that OLETF rats fail to compensate for fat calories and suggest that their hyperphagia and obesity may stem from a reduced ability to process nutrient-elicited gastrointestinal satiety signals.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Guan-Lin Lee ◽  
Tsai-Lien Liao ◽  
Jing-Yiing Wu ◽  
Kenneth K. Wu ◽  
Cheng-Chin Kuo

Abstract Background Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. Methods High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. Results 5-MTP was detected in aortic tissues of ApoE−/− mice fed control chow. It was reduced in ApoE−/− mice fed high-fat diet (HFD), but was restored in ApoE−/−Tlr2−/− mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE−/− mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. Conclusions These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2–mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity.


1984 ◽  
Vol 246 (6) ◽  
pp. R943-R948 ◽  
Author(s):  
J. Oku ◽  
G. A. Bray ◽  
J. S. Fisler ◽  
R. Schemmel

The effects of ventromedial hypothalamic (VMH) knife-cut lesions on food intake and body weight of S 5B/Pl rats, which are normally resistant to obesity when eating a high-fat diet, were examined in two experiments. In the first experiment body weight increased only slightly after VMH knife-cut lesions when animals were fed pelleted laboratory chow or a 10% corn oil diet. When eating the 30% corn oil diet, however, body weight increased in the VMH knife-cut rats. In the second experiment VMH knife-cut lesions produced a small weight gain in rats fed the 10% fat diet; this manipulation also increased food intake and disrupted the normal diurnal feeding pattern. Changes in the weight of the liver, interscapular brown adipose tissue, and white adipose tissue paralleled the changes in body weight. Plasma insulin increased in the rats eating the 30% corn oil diet ad libitum but not in the VMH-lesioned animals pair fed to the sham-operated rats. Incorporation of 3H from 3H2O into lipid was significantly increased in white fat of animals with VMH knife cuts. Similar results were obtained from incubation of adipose tissue in vitro with insulin and radioactively labeled glucose. These studies show that hypothalamic knife-cut lesions can remove the resistance of the S 5B/Pl rats to obesity when they are fed a high-fat diet.


2021 ◽  
Vol 32 (4) ◽  
pp. 547-553
Author(s):  
Mahardian Rahmadi ◽  
Ahmad Dzulfikri Nurhan ◽  
Eka Dewi Pratiwi ◽  
Devita Ardina Prameswari ◽  
Sisca Melani Panggono ◽  
...  

Abstract Objectives Nonalcoholic fatty liver disease (NAFLD) is exceptionally common around the world. The development of NAFLD is increasing rapidly in the world, along with changes in lifestyle. Excess lipid intake is one of the risk factors for NAFLD. The NAFLD model is induced by a high-fat diet contains SFA, MUFA, and ῳ-6 PUFA. This study aims to assess the effect of high-fat diet variation on liver histology in developing NAFLD models in mice. Methods Thirty-six male mice (Balb/c) were divided into six groups fed a high-fat diet containing beef tallow 60%, beef tallow 45%, vegetable ghee, animal ghee + corn oil, vegetable ghee + corn oil for 28 days and compared to a control group fed a chow diet. All of the mice were fed with a high-fat diet in the form of pellets ad libitum for 28 days. Bodyweight and food intake were measured every day. At the last day of treatment, animals were sacrificed and the Liver were taken for histological analysis. Results This study showed that NAFLD model development was achieved in all group mice fed a high-fat diet with different degrees of NAFLD. Beef tallow 60% had the worst liver histology. Conclusions Thus, based on this study, we found that high-fat diet variations influenced the development of NAFLD models in mice, particularly concerning liver histology.


Sign in / Sign up

Export Citation Format

Share Document