scholarly journals Polyoxyethylene 40 stearate modulates multidrug resistance and enhances antitumor activity of vinblastine sulfate

2007 ◽  
Vol 9 (3) ◽  
Author(s):  
Lingying Luo ◽  
Xiaoqiang Xu ◽  
Beijia Shi ◽  
Jinhui Wu ◽  
Yiqiao Hu
2005 ◽  
Vol 11 (16) ◽  
pp. 6002-6011 ◽  
Author(s):  
Vincent K.W. Wong ◽  
Pauline Chiu ◽  
Stephen S.M. Chung ◽  
Larry M.C. Chow ◽  
Yun-Zhe Zhao ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yan-Bo Zheng ◽  
Jian-Hua Gong ◽  
Xiu-Jun Liu ◽  
Shu-Ying Wu ◽  
Yi Li ◽  
...  

2000 ◽  
Vol 114 (1-3) ◽  
pp. 155-162 ◽  
Author(s):  
Yasuyuki Sadzuka ◽  
Tomomi Sugiyama ◽  
Takashi Sonobe

1994 ◽  
Vol 57 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Irene Utz ◽  
Susanne Hofer ◽  
Urs Regenass ◽  
Wolfgang Hilbe ◽  
Josef Thaler ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3589-3589 ◽  
Author(s):  
May S.K. Sutherland ◽  
Roland B. Walter ◽  
Scott C. Jeffrey ◽  
Patrick J. Burke ◽  
Changpu Yu ◽  
...  

Abstract Abstract 3589 Outcomes for patients with acute myeloid leukemia (AML) are poor, highlighting the need for novel treatment options. Most AML cells express the myeloid differentiation antigen CD33, making CD33-targeted therapy a potential treatment strategy. Gemtuzumab ozogamicin (GO), an anti-CD33 monoclonal antibody (mAb) conjugated to the cytotoxic agent calicheamicin, has recently been shown to improve survival in newly diagnosed patients with more favorable-risk AML but has insufficient activity in those with poor prognostic features as well as in relapsed disease. Here we report the preclinical testing of a novel CD33-directed antibody-drug conjugate, SGN-CD33A, consisting of a humanized anti-CD33 mAb with 2 engineered cysteine residues through which pyrrolobenzodiazepine (PBD) dimer drug moieties are conjugated via a maleimidocaproyl valine-alanine dipeptide linker. PBD dimers exert their biological activity by covalent binding and interstrand cross-linking of DNA. Fluorescence microscopy studies showed that SGN-CD33A is rapidly internalized and traffics to lysosomes within hours of binding to CD33-positive AML cell lines. Following uptake, SGN-CD33A induces DNA damage as measured by phosphorylation of histone 2AX, subsequently leading to G2-M cell cycle arrest, disruption of mitochondrial membrane integrity, increased caspase-3 activity, formation of cleaved poly ADP-ribose polymerase, DNA fragmentation and cell death. The anti-leukemic activity of SGN-CD33A was assessed in cytotoxicity assays against 12 AML cell lines and 18 primary AML patient samples of mixed cytogenetic origin (favorable, intermediate and unfavorable) and multidrug resistance (MDR) status. SGN-CD33A was highly active against all AML cell lines tested (mean IC50, 22 ng/ml), including 5 of 5 MDR-positive cell lines (mean IC50, 27 ng/mL). In contrast, GO was moderately active in 1 of 5 MDR-positive cell lines (IC50, 227 ng/mL) but inactive against the other 4 (IC50, >1000 ng/mL). SGN-CD33A was also active against 15 of 18 primary samples isolated from untreated AML patients at diagnosis (mean IC50 of responsive samples, 8 ng/mL) and was more potent than GO which was active in 10 of 18 AML samples (mean IC50 of responding samples, 27 ng/mL). The 3 AML specimens that were resistant to SGN-CD33A each had low or absent CD33 expression, as determined by flow cytometry. Cytogenetic abnormalities and MDR activity did not correlate with in vitro SGN-CD33A cytotoxicity. In vivo antitumor activity was evaluated in AML mouse xenograft models established with MDR-negative HL-60 and MDR-positive THP-1 and TF1-α cell lines. SGN-CD33A dosed once at 300 mcg/kg yielded durable complete regressions in THP-1 (Figure A) and TF1-α xenografts. In these models of drug-resistant AML, treatment with a single dose of 100 mcg/kg SGN-CD33A significantly delayed tumor growth compared to untreated and non-binding control ADC-treated mice (p<0.001), whereas GO was inactive even when dosed at 1000 mcg/kg. In the MDR-negative HL-60 model, a single dose of 30 mcg/kg of SGN-CD33A delayed tumor growth and 100 mcg/kg induced complete tumor regression (Figure B). In contrast, GO had minimal activity when dosed at 100 mcg/kg but did result in durable tumor regression when administered at a ten-fold higher dose (Figure B). Together, these data demonstrate that SGN-CD33A exhibits antitumor activity against a broad panel of primary AML samples and results in durable remissions in preclinical models of MDR-positive AML that are characteristically resistant to conventional chemotherapy and GO. CD33-directed delivery of PBD dimers may overcome multidrug resistance and may represent a new strategy for the treatment of patients with AML. Clinical trials are planned to further evaluate SGN-CD33A in AML. Disclosures: Sutherland: Seattle Genetics, Inc.: Employment. Walter:Seattle Genetics, Inc.: Consultancy, Research Funding. Jeffrey:Seattle Genetics, Inc.: Employment. Burke:Seattle Genetics, Inc.: Employment. Yu:Seattle Genetics, Inc.: Employment. Stone:Seattle Genetics, Inc.: Employment. Ryan:Seattle Genetics, Inc.: Employment. Sussman:Seattle Genetics, Inc.: Employment. Zeng:Seattle Genetics, Inc.: Employment. Benjamin:Seattle Genetics, Inc.: Employment. Bernstein:Seattle Genetics, Inc.: Consultancy. Senter:Seattle Genetics, Inc.: Employment. Drachman:Seattle Genetics, Inc.: Employment. McEarchern:Seattle Genetics, Inc.: Employment.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Awtar Krishan

Earle's L-929 fibroblasts treated with mitosis-arresting but sub-lethal doses of vinblastine sulfate (VLB) show hypertrophy of the granular endoplasmic reticulum and annulate lamellae. Exposure of the cells to heavier doses of vincristine sulfate (VCR), a VLB-related drug, leads to the accumulation of large amounts of helical polyribosomes, Golgi membranes and crystals in the cytoplasm. In many of these cells a large number of helical polyribosomes are arranged in prominent linear rows, some of which may be up to 5 micrometers in length. Figure 1 shows a large array of helical polyribosomes near a crystalline mass (CRS) in an Earle's L-929 fibroblast exposed to VCR (5ϒ/ml.) for 3 hours At a higher magnification, as seen in figure 2, the helical polyribosomes are seen arranged in parallel rows. In favorably cut sections, a prominent backbone like "stalk" of finely granular material, measuring approximately 300Å in width is seen in close association with the linear rows of helical polyribosomes.


2010 ◽  
Vol 34 (8) ◽  
pp. S47-S47
Author(s):  
Guopei Zheng ◽  
Sisi Yi ◽  
Yafei Li ◽  
Fangren Kong ◽  
Yanhui Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document