scholarly journals Novel Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Oral Delivery of Cinnarizine: Design, Optimization, and In-Vitro Assessment

2012 ◽  
Vol 13 (3) ◽  
pp. 967-977 ◽  
Author(s):  
Ahmad Abdul-Wahhab Shahba ◽  
Kazi Mohsin ◽  
Fars Kaed Alanazi
2020 ◽  
Vol 21 (6) ◽  
Author(s):  
Christina Karavasili ◽  
Ioannis I. Andreadis ◽  
Maria P. Tsantarliotou ◽  
Ioannis A. Taitzoglou ◽  
Paschalina Chatzopoulou ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1052
Author(s):  
Reem Abou Assi ◽  
Ibrahim M. Abdulbaqi ◽  
Toh Seok Ming ◽  
Chan Siok Yee ◽  
Habibah A. Wahab ◽  
...  

Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 736-742 ◽  
Author(s):  
Clizia Guccione ◽  
Maria Bergonzi ◽  
Khaled Awada ◽  
Vieri Piazzini ◽  
Anna Bilia

AbstractThe aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β-carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 – 70% passive oral human absorption in vivo.


2014 ◽  
Vol 68 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Ljiljana Djekic ◽  
Marija Primorac

Development of self-dispersing drug delivery systems (SMEDDS) is a modern strategy for oral delivery improvement of poorly soluble drugs. Self-microemulsifying drug delivery systems (SMEDDS) are isotropic mixtures of oils and hydrophilic surfactants, which form oil-in-water (o/w) microemulsions by dilution in aqueous media (e.g., gastrointestinal fluids). Formulation of SMEDDS carriers requires consideration of a large number of formulation parameters and their influences on process of self-microemulsifying and releasing of drug. The aim of this work was formulation and characterisation of SMEDDS for oral administration of ibuprofen. In the experimental work, two series of potential SMEDDS were prepared (M1-M10), using surfactant (Labrasol?, Gattefosse), cosurfactant (PEG-40 hydrogenated castor (Cremophor? RH40), and oil (medium chain triglycerides (Crodamol? GTCC) and olive oil (Cropur? Olive)), at surfactant-to-cosurfactant mass ratios (Km) 9:1, 7:3, 5:5, 3:7, and 1:9, and 10 % or 20 % of the oil phase. Ibuprofen was dissolved in formulations in concentration of 10 %. Characterisation of the investigated formulations included evaluation of physical stability, self-microemulsification ability in 0,1M HCl (pH 1.2) and phosphate buffer pH 7.2 (USP) and in vitro drug release. Formation of o/w microemulsions with the average droplet size (Z-ave) up to 100 nm, was observed in dispersions of formulations prepared with 10% w/w of medium chain triglycerides, within the entire investigated range of the Km values (M1-M5). These formulations were selected as SMEDDS. Results of characterisation pointed out the importance of the type and concentration of the oil as well as the Km value for the self-microemulsying ability as well as drug release kinetics from the investigated SMEDDS. Ibuprofen relase was in accordance with the request of USP 30-NF 25 (at least 80 %, after 60 min) from the formulations M1 (Km 9:1) and M5 (Km 1:9). Furthermore, ibuprofen release was completed after 10 minutes from formulation M1, while the release from the carrier M5 (~30 %) as well as from the commercial tablets Brufen? (~55%) and soft capsules Rapidol? (~65 %), examined under the same conditions, was significantly slower. The present study revealed that the formulation M1 represents a potential SMEDDS which efficiently solubilises ibuprofen in acidic media, with potential to minimise the side effects, while on introduction into alkaline intestinal environment, the drug may rapidly release from the carrier and undergo apsorption.


2020 ◽  
Vol 12 (1) ◽  
pp. 152-160
Author(s):  
Sung-Up Choi ◽  
Mi Jeong Kim ◽  
Sung Tae Kim ◽  
Hee-Cheol Kim ◽  
Kwan Hyung Cho ◽  
...  

Self-microemulsifying drug delivery systems represent a stable formulation for enhancing the solubility and absorption efficacy of poorly soluble drugs. In this study, a self-microemulsifying drug delivery system (SMEDDS) was designed and applied for oral administration of poorly water-soluble pazopanib, a Biopharmaceutical Classification Class II anticancer drug. The solubility of pazopanib was first evaluated using various oils, surfactants, and co-surfactants. Pseudoternary phase diagrams were plotted to identify the selfemulsifying region and the phase behavior of optimized vehicle selected after screening of oils, surfactants, and co-surfactants. The SMEDDS comprising Capmul MCM NF, Tween 80, and PEG 400 was fabricated for incorporating pazopanib. It exhibited spherical droplets with size of 86.9 ± 0.8 nm and zeta potential value of –14.7 ± 0.1 mV. In vitro dissolution profiles of the SMEDDS were 2.40-fold (pH 4.0) and 6.45-fold (pH 6.8) higher than that of pazopanib powder. In particular, pazopanib-SMEDDS showed pH-independent dissolution profiles. In vivo pharmacokinetic parameters of the SMEDDS revealed enhanced bioavailability of pazopanib, which was 3.32-fold higher than that of pazopanib powder when administered orally. Taken together, the SMEDDS is effective as an oral delivery vehicle for pazopanib. In addition, our findings demonstrate that self-microemulsifying drug delivery systems could be a potential tool for improving bioavailability of other poorly water-soluble drugs.


2006 ◽  
Vol 29 (5) ◽  
pp. 367-374 ◽  
Author(s):  
Samah Anabousi ◽  
Udo Bakowsky ◽  
Marc Schneider ◽  
Hanno Huwer ◽  
Claus-Michael Lehr ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


Sign in / Sign up

Export Citation Format

Share Document