scholarly journals Modulation by Steroid Receptor Coactivator-1 of Target-Tissue Responsiveness in Resistance to Thyroid Hormone

Endocrinology ◽  
2003 ◽  
Vol 144 (9) ◽  
pp. 4144-4153 ◽  
Author(s):  
Yuji Kamiya ◽  
Xiao-Yong Zhang ◽  
Hao Ying ◽  
Yusuhito Kato ◽  
Mark C. Willingham ◽  
...  

Abstract Mutations in the thyroid hormone receptor-β gene (TRβ) cause resistance to thyroid hormone. How the action of mutant thyroid hormone nuclear receptors (TRs) is regulated in vivo is not clear. We examined the effect of a TR coactivator, steroid receptor coactivator-1 (SRC-1), on target-tissue responsiveness by using a mouse model of resistance to thyroid hormone, TRβPV knockin mice, in the SRC-1 null background. Lack of SRC-1 intensified the dysfunction of the pituitary-thyroid axis and impaired growth in TRβPV/+ mice but not in TRβPV/PV mice. In TRβPV/PV mice, however, lack of SRC-1 intensified the pathological progression of thyroid follicular cells to papillary hyperplasia, reminiscent of papillary neoplasia. In contrast, lack of SRC-1 did not affect responsiveness in the liver in regulating serum cholesterol in either TRβPV/+ or TRβPV/PV mice. Lack of SRC-1 led to changes in the abnormal expression patterns of several T3 target genes in the pituitary and liver. Thus, the present studies show that a coactivator such as SRC-1 could modulate the in vivo action of TRβ mutants in a tissue-dependent manner.

Endocrinology ◽  
2016 ◽  
Vol 157 (4) ◽  
pp. 1683-1693 ◽  
Author(s):  
Fang Hu ◽  
Joseph R. Knoedler ◽  
Robert J. Denver

Abstract Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3927-3934 ◽  
Author(s):  
Manuela Alonso ◽  
Charles Goodwin ◽  
XiaoHui Liao ◽  
Tania Ortiga-Carvalho ◽  
Danielle S. Machado ◽  
...  

The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-β is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRβ, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRβE457A/E457A) mice worsened the degree of resistance to TH, resulting in increased serum T4 and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRβ or the TRα to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1136-1142 ◽  
Author(s):  
Carmen Grijota-Martínez ◽  
Eric Samarut ◽  
Thomas S. Scanlan ◽  
Beatriz Morte ◽  
Juan Bernal

Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TRβ-selective GC-24 and the TRα-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TRβ and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TRα or TRβ. This compound, previously shown to be TRα-selective in tadpoles, displayed no selectivity in the rat in vivo.


2004 ◽  
Vol 24 (20) ◽  
pp. 9026-9037 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Akihiro Tomita ◽  
Liezhen Fu ◽  
Bindu D. Paul ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


2003 ◽  
Vol 284 (1) ◽  
pp. E36-E46 ◽  
Author(s):  
Peter M. Sadow ◽  
Olivier Chassande ◽  
Karine Gauthier ◽  
Jacques Samarut ◽  
Jianming Xu ◽  
...  

Isoforms of the thyroid hormone receptor ( TR) α and TRβ genes mediate thyroid hormone action. How TR isoforms modulate tissue-specific thyroid hormone (TH) action remains largely unknown. The steroid receptor coactivator-1 (SRC-1) is among a group of transcriptional coactivator proteins that bind to TRs, along with other members of the nuclear receptor superfamily, and modulate the activity of genes regulated by TH. Mice deficient in SRC-1 possess decreased tissue responsiveness to TH and many steroid hormones; however, it is not known whether or not SRC-1-mediated activation of TH-regulated gene transcription in peripheral tissues, such as heart and liver, is TR isoform specific. We have generated mice deficient in TRα and SRC-1, as well as in TRβ and SRC-1, and investigated thyroid function tests and effects of TH deprivation and TH treatment compared with wild-type (WT) mice or those deficient in either TR or SRC-1 alone. The data show that 1) in the absence of TRα or TRβ, SRC-1 is important for normal growth; 2) SRC-1 modulates TRα and TRβ effects on heart rate; 3) two new TRβ-dependent markers of TH action in the liver have been identified, osteopontin (upregulated) and glutathione S-transferase (downregulated); and 4) SRC-1 may mediate the hypersensitivity to TH seen in liver of TRα-deficient mice.


2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


2010 ◽  
Vol 205 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Marcelo A Christoffolete ◽  
Márton Doleschall ◽  
Péter Egri ◽  
Zsolt Liposits ◽  
Ann Marie Zavacki ◽  
...  

Thyroid hormone receptor (TR) and liver X-receptor (LXR) are the master regulators of lipid metabolism. Remarkably, a mouse with a targeted deletion of both LXRα and LXRβ is resistant to western diet-induced obesity, and exhibits ectopic liver expression of the thyroid hormone activating type 2 deiodinase (D2). We hypothesized that LXR/retinoid X-receptor (RXR) signaling inhibits hepatic D2 expression, and studied this using a luciferase reporter containing the human DIO2 (hDIO2) promoter in HepG2 cells. Given that, in contrast to mammals, the chicken liver normally expresses D2, the chicken DIO2 (cDIO2) promoter was also studied. 22(R)-OH-cholesterol negatively regulated hDIO2 in a dose-dependent manner (100 μM, approximately twofold), while it failed to affect the cDIO2 promoter. Truncations in the hDIO2 promoter identified the region −901 to −584 bp as critical for negative regulation. We also investigated if 9-cis retinoic acid (9-cis RA), the ligand for the heterodimeric partner of TR and LXR, RXR, could regulate the hDIO2 promoter. Notably, 9-cis RA repressed the hDIO2 luciferase reporter (1 μM, approximately fourfold) in a dose-dependent manner, while coexpression of an inactive mutant RXR abolished this effect. However, it is unlikely that RXR homodimers mediate the repression of hDIO2 since mutagenesis of a DR-1 at −506 bp did not interfere with 9-cis RA-mediated repression. Our data indicate that hDIO2 transcription is negatively regulated by both 22(R)-OH-cholesterol and 9-cis RA, which is consistent with LXR/RXR involvement. In vivo, the inhibition of D2-mediated tri-iodothyronine (T3) production by cholesterol/9-cis RA could function as a feedback loop, given that T3 decreases hepatic cholesterol levels.


Sign in / Sign up

Export Citation Format

Share Document