scholarly journals Novel Mechanism of Positive versus Negative Regulation by Thyroid Hormone Receptor β1 (TRβ1) Identified by Genome-wide Profiling of Binding Sites in Mouse Liver

2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1136-1142 ◽  
Author(s):  
Carmen Grijota-Martínez ◽  
Eric Samarut ◽  
Thomas S. Scanlan ◽  
Beatriz Morte ◽  
Juan Bernal

Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TRβ-selective GC-24 and the TRα-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TRβ and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TRα or TRβ. This compound, previously shown to be TRα-selective in tadpoles, displayed no selectivity in the rat in vivo.


2004 ◽  
Vol 24 (20) ◽  
pp. 9026-9037 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Akihiro Tomita ◽  
Liezhen Fu ◽  
Bindu D. Paul ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


2011 ◽  
Vol 96 (6) ◽  
pp. E948-E952 ◽  
Author(s):  
Tetsuya Tagami ◽  
Takeshi Usui ◽  
Akira Shimatsu ◽  
Mutsuo Beniko ◽  
Hiroyuki Yamamoto ◽  
...  

Context: Patients with TSH-secreting pituitary adenomas (TSHoma) show inappropriate secretion of TSH; serum TSH levels are not suppressed despite high serum free thyroid hormone levels. The mechanism of a defect in negative regulation of TSH in a TSHoma is still unclear. Objective: Recently, we cloned a novel thyroid hormone receptor β isoform (TRβ4) from a human pituitary library. To elucidate the clinical significance of TRβ4, we investigated the expression of this isoform in TSHoma. Methods: RT-PCR was performed to detect TRβ isoforms such as TRβ1, TRβ2, and TRβ4 using RNA obtained from surgically resected TSHoma. The effects of TRβ4 on the TSH gene expression were examined in the transient gene expression experiments. Results: Quantitative analysis using a real-time PCR revealed that relative expression of TRβ4 to TRβ1+2 was higher in three TSHoma than in a prolactinoma or a nonfunctioning pituitary adenoma. TRβ4 construct did not mediate T3-dependent gene regulation but inhibited the negative regulation of TSHα mediated by TRβ1 or TRβ2. Conclusions: Aberrant expression of TRβ4 may partly contribute to the inappropriate secretion of TSH in a TSHoma.


PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10119 ◽  
Author(s):  
Oliver Weth ◽  
Christine Weth ◽  
Marek Bartkuhn ◽  
Joerg Leers ◽  
Florian Uhle ◽  
...  

2008 ◽  
Vol 28 (8) ◽  
pp. 2732-2744 ◽  
Author(s):  
Pantelis Hatzis ◽  
Laurens G. van der Flier ◽  
Marc A. van Driel ◽  
Victor Guryev ◽  
Fiona Nielsen ◽  
...  

ABSTRACT Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator β-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin occupancy, we have identified 6,868 high-confidence TCF4-binding sites in the LS174T colorectal cancer cell line. Most TCF4-binding sites are located at large distances from transcription start sites, while target genes are frequently “decorated” by multiple binding sites. Motif discovery algorithms define the in vivo-occupied TCF4-binding site as evolutionarily conserved A-C/G-A/T-T-C-A-A-A-G motifs. The TCF4-binding regions significantly correlate with Wnt-responsive gene expression profiles derived from primary human adenomas and often behave as β-catenin/TCF4-dependent enhancers in transient reporter assays.


2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04020 ◽  
Author(s):  
Lars C. Moeller ◽  
Xia Cao ◽  
Alexandra M. Dumitrescu ◽  
Hisao Seo ◽  
Samuel Refetoff

Thyroid hormone (TH) action is mediated principally through binding of the hormone ligand, 3,3,5-triiodothyronine (T3), to TH receptors (TRs). This hormone-receptor interaction recruits other proteins to form complexes that regulate gene expression by binding to DNA sequences in the promoter of target genes. We recently described an extranuclear mechanism of TH action that consists of the association of TH-liganded TRβ with p85α [regulatory subunit of phosphatidylinositol 3-kinase (PI3K)] in the cytosol and subsequent activation of the PI3K, generating phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. This initiates the activation of a signaling cascade by phosphorylation of Akt, mammalian target of rapamycin (mTOR) and its substrate p70S6K, leading to the stimulation of ZAKI-4α synthesis, a calcineurin inhibitor. Furthermore, we found that this same mechanism leads to induction of the transcription factor hypoxia-inducible factor (HIF-1α), and its target genes, glucose transporter (GLUT)1, platelet-type phosphofructokinase (PFKP), and monocarboxylate transporter (MCT) 4. These genes are of special interest, because their products have important roles in cellular glucose metabolism, from glucose uptake (GLUT1) to glycolysis (PFKP) and lactate export (MCT4). These results demonstrate that the TH-TRβ complex can exert a non-genomic action in the cytosol leading to changes in gene expression by direct (HIF-1α) and indirect (ZAKI-4α, GLUT1, PFKP) means.


Sign in / Sign up

Export Citation Format

Share Document