scholarly journals Origin of Neuropeptide Y-Containing Afferents to Gonadotropin-Releasing Hormone Neurons in Male Mice

Endocrinology ◽  
2003 ◽  
Vol 144 (11) ◽  
pp. 4967-4974 ◽  
Author(s):  
Gergely F. Turi ◽  
Zsolt Liposits ◽  
Suzanne M. Moenter ◽  
Csaba Fekete ◽  
Erik Hrabovszky

Abstract The origin of neuropeptide Y (NPY) afferents to GnRH neurons was investigated in male mice. Neonatal lesioning of the hypothalamic arcuate nuclei (ARC) with monosodium glutamate markedly reduced the number of NPY fibers in the preoptic area as well as the frequency of their contacts with perikarya and proximal dendrites of GnRH neurons. Dual-label immunofluorescence studies to determine the precise contribution of the ARC to the innervation of GnRH neurons by NPY axons were carried out on transgenic mice in which enhanced green fluorescent protein was expressed under the control of the GnRH promoter (GnRH-enhanced green fluorescent protein mice). The combined application of red Cy3 and blue AMCA fluorochromogenes established that 49.1 ± 7.3% of NPY axons apposed to green GnRH neurons also contained agouti-related protein (AGRP), a selective marker for NPY axons arising from the ARC. Immunoelectronmicroscopic analysis detected symmetric synapses between AGRP fibers and GnRH-immunoreactive perikarya. Additional triple-fluorescence experiments revealed the presence of dopamine-β-hydroxylase immunoreactivity within 25.4 ± 3.3% of NPY afferents to GnRH neurons. This enzyme marker enabled the selective labeling of NPY pathways ascending from noradrenergic/adrenergic cell populations of the brain stem, thus defining a second important source for NPY-containing fibers regulating GnRH cells. The absence of both topographic markers (AGRP and dopamine-β-hydroxylase) within 26% of NPY contacts suggests that additional sources of NPY fibers to GnRH neurons exist. Future studies will address distinct functions of the two identified NPY systems in the afferent neuronal regulation of the GnRH system.

2012 ◽  
Vol 302 (11) ◽  
pp. E1399-E1406 ◽  
Author(s):  
T. A. Roepke ◽  
A. W. Smith ◽  
O. K. Rønnekleiv ◽  
M. J. Kelly

Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K+ currents. A potential K+ current is the M-current, a noninactivating, subthreshold outward K+ current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond to energy states, we hypothesized that fasting may alter the M-current and/or its modulation by serotonergic input to POMC neurons. Using visualized-patch recording in neurons from fed male enhanced green fluorescent protein-POMC transgenic mice, we established that POMC neurons expressed a robust M-current (102.1 ± 6.7 pA) that was antagonized by the selective KCNQ channel blocker XE-991 (40 μM). However, the XE-991-sensitive current in POMC neurons did not differ between fed and fasted states. To determine if serotonin suppresses the M-current via the 5-HT2C receptor, we examined the effects of the 5-HT2A/5-HT2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) on the M-current. Indeed, DOI attenuated the M-current by 34.5 ± 6.9% and 42.0 ± 5.3% in POMC neurons from fed and fasted male mice, respectively. In addition, the 5-HT1B/5-HT2C receptor agonist m-chlorophenylpiperazine attenuated the M-current by 42.4 ± 5.4% in POMC neurons from fed male mice. Moreover, the selective 5-HT2C receptor antagonist RS-102221 abrogated the actions of DOI in suppressing the M-current. Collectively, these data suggest that although M-current expression does not differ between fed and fasted states in POMC neurons, serotonin inhibits the M-current via activation of 5-HT2C receptors to increase POMC neuronal excitability and, subsequently, reduce food intake.


Endocrinology ◽  
2006 ◽  
Vol 147 (8) ◽  
pp. 3652-3661 ◽  
Author(s):  
Elizabeth C. Cottrell ◽  
Rebecca E. Campbell ◽  
Seong-Kyu Han ◽  
Allan E. Herbison

The GnRH neurons represent the output cells of the neuronal network controlling gonadal function. Their activation initiates the onset of puberty, but the underlying mechanisms remain unclear. Using a GnRH-green fluorescent protein mouse model, we have been able to fill individual GnRH neurons with biocytin in the acute brain slice preparation to examine their morphological characteristics across puberty. GnRH neurons in prepubertal male mice [postnatal d 10–15 (PND10–15)] exhibited half as many dendritic and somal spines as adult male mice (>PND60; P < 0.05) but, surprisingly, a much more complex dendritic tree with 5-fold greater branch points (P < 0.05). Experiments examining somal and proximal dendritic spine numbers in vivo, in perfusion-fixed tissue from GnRH-green fluorescent protein mice, revealed the same pattern of approximately twice as many spines on adult GnRH neurons compared with PND10 male mice (P < 0.01). In contrast to the spine density alterations, reflecting changing excitatory input, confocal immunofluorescence studies revealed no differences in the numbers of vesicular γ-aminobutyric acid transporter-immunoreactive elements adjacent to GnRH soma or proximal dendrites in prepubertal and adult male mice. Experiments evaluating dendritic tree structure in vivo (PND3, -10, and -35 and adult) revealed that GnRH neurons located in the rostral preoptic area, but not the medial septum, exhibited a more complex branching pattern at PND10, but that this was adult-like by PND35. These studies demonstrate unexpected dendritic tree remodeling in the GnRH neurons and provide evidence for an increase in direct excitatory inputs to GnRH neurons across the time of puberty.


2006 ◽  
Vol 14 (21) ◽  
pp. 9815 ◽  
Author(s):  
Alberto Diaspro ◽  
Silke Krol ◽  
Barbara Campanini ◽  
Fabio Cannone ◽  
Giuseppe Chirico

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Sign in / Sign up

Export Citation Format

Share Document