scholarly journals Reduction of Insulin-Stimulated Glucose Uptake in L6 Myotubes by the Protein Kinase Inhibitor SB203580 Is Independent of p38MAPK Activity

Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3773-3781 ◽  
Author(s):  
C. N. Antonescu ◽  
C. Huang ◽  
W. Niu ◽  
Z. Liu ◽  
P. A. Eyers ◽  
...  

Abstract Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKα and p38MAPKβ (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38α and/or p38β. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38α (drug-resistant p38α) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38α or p38β reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38α or p38β by 60–70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.

1998 ◽  
Vol 18 (12) ◽  
pp. 6971-6982 ◽  
Author(s):  
Ko Kotani ◽  
Wataru Ogawa ◽  
Michihiro Matsumoto ◽  
Tadahiro Kitamura ◽  
Hiroshi Sakaue ◽  
...  

ABSTRACT Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCζ and PKCλ) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKCλ in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKCλ (λKD or λΔNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKCλ, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by λKD or λΔNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKCλ was ∼50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKCλ mutant that lacks the pseudosubstrate domain (λΔPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of λΔPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKCλ. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKCλ pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.


2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2007 ◽  
Vol 402 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Tsung-Yin J. Yeh ◽  
Juan I. Sbodio ◽  
Zhi-Yang Tsun ◽  
Biao Luo ◽  
Nai-Wen Chi

The glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert GLUT4 and IRAP into the plasma membrane. The mechanisms regulating GSV trafficking are not fully defined. In the present study, using 3T3-L1 adipocytes transfected with siRNAs (small interfering RNAs), we show that insulin-stimulated IRAP translocation remained intact despite substantial GLUT4 knockdown. By contrast, insulin-stimulated GLUT4 translocation was impaired upon IRAP knockdown, indicating that IRAP plays a role in GSV trafficking. We also show that knockdown of tankyrase, a Golgi-associated IRAP-binding protein that co-localizes with perinuclear GSVs, attenuated insulin-stimulated GSV translocation and glucose uptake without disrupting insulin-induced phosphorylation cascades. Moreover, iodixanol density gradient analyses revealed that tankyrase knockdown altered the basal-state partitioning of GLUT4 and IRAP within endosomal compartments, apparently by shifting both proteins toward less buoyant compartments. Importantly, the afore-mentioned effects of tankyrase knockdown were reproduced by treating adipocytes with PJ34, a general PARP (poly-ADP-ribose polymerase) inhibitor that abrogated tankyrase-mediated protein modification known as poly-ADP-ribosylation. Collectively, these findings suggest that physiological GSV trafficking depends in part on the presence of IRAP in these vesicles, and that this process is regulated by tankyrase and probably its PARP activity.


2001 ◽  
Vol 21 (22) ◽  
pp. 7852-7861 ◽  
Author(s):  
Liora Braiman ◽  
Addy Alt ◽  
Toshio Kuroki ◽  
Motoi Ohba ◽  
Asia Bak ◽  
...  

ABSTRACT Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKCζ in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKCζ to associate specifically with the GLUT4 compartments and that PKCζ together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKCζ and GLUT4 recycled independently of one another. To further establish the importance of PKCζ in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKCζ (DNPKCζ) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKCζ was associated with a marked increase in the activity of this isoform. The overexpressed, active PKCζ coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKCζ caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKCζ induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKCζ disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKCζ regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.


2015 ◽  
Vol 228 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Nami Kim ◽  
Jung Ok Lee ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Hyung Ip Kim ◽  
...  

Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-α (PKCα). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle.


2009 ◽  
Vol 297 (2) ◽  
pp. G361-G370 ◽  
Author(s):  
Eikichi Ihara ◽  
Lori Moffat ◽  
Meredith A. Borman ◽  
Jennifer E. Amon ◽  
Michael P. Walsh ◽  
...  

As a regulator of smooth muscle contraction, zipper-interacting protein kinase (ZIPK) can directly phosphorylate the myosin regulatory light chains (LC20) and produce contractile force. Synthetic peptides (SM-1 and AV25) derived from the autoinhibitory region of smooth muscle myosin light chain kinase can inhibit ZIPK activity in vitro. Paradoxically, treatment of Triton-skinned ileal smooth muscle strips with AV25, but not SM-1, potentiated Ca2+-independent, microcystin- and ZIPK-induced contractions. The AV25-induced potentiation was limited to ileal and colonic smooth muscles and was not observed in rat caudal artery. Thus the potentiation of Ca2+-independent contractions by AV25 appeared to be mediated by a mechanism unique to intestinal smooth muscle. AV25 treatment elicited increased phosphorylation of LC20 (both Ser-19 and Thr-18) and myosin phosphatase-targeting subunit (MYPT1, inhibitory Thr-697 site), suggesting involvement of a Ca2+-independent LC20 kinase with coincident inhibition of myosin phosphatase. The phosphorylation of the inhibitor of myosin phosphatase, CPI-17, was not affected. The AV25-induced potentiation was abolished by pretreatment with staurosporine, a broad-specificity kinase inhibitor, but specific inhibitors of Rho-associated kinase, PKC, and MAPK pathways had no effect. When a dominant-negative ZIPK [kinase-dead ZIPK(1–320)-D161A] was added to skinned ileal smooth muscle, the potentiation of microcystin-induced contraction by AV25 was blocked. Furthermore, pretreatment of skinned ileal muscle with SM-1 abolished AV25-induced potentiation. We conclude, therefore, that, even though AV25 is an in vitro inhibitor of ZIPK, activation of the ZIPK pathway occurs following application of AV25 to permeabilized ileal smooth muscle. Finally, we propose a mechanism whereby conformational changes in the pseudosubstrate region of ZIPK permit augmentation of ZIPK activity toward LC20 and MYPT1 in situ. AV25 or molecules based on its structure could be used in therapeutic situations to induce contractility in diseases of the gastrointestinal tract associated with hypomotility.


2018 ◽  
Vol 115 (30) ◽  
pp. 7819-7824 ◽  
Author(s):  
Yuliya Skorobogatko ◽  
Morgan Dragan ◽  
Claudia Cordon ◽  
Shannon M. Reilly ◽  
Chao-Wei Hung ◽  
...  

Insulin increases glucose uptake into adipose tissue and muscle by increasing trafficking of the glucose transporter Glut4. In cultured adipocytes, the exocytosis of Glut4 relies on activation of the small G protein RalA by insulin, via inhibition of its GTPase activating complex RalGAP. Here, we evaluate the role of RalA in glucose uptake in vivo with specific chemical inhibitors and by generation of mice with adipocyte-specific knockout of RalGAPB. RalA was profoundly activated in brown adipose tissue after feeding, and its inhibition prevented Glut4 exocytosis. RalGAPB knockout mice with diet-induced obesity were protected from the development of metabolic disease due to increased glucose uptake into brown fat. Thus, RalA plays a crucial role in glucose transport in adipose tissue in vivo.


1993 ◽  
Vol 264 (2) ◽  
pp. E167-E172 ◽  
Author(s):  
M. Kusunoki ◽  
L. H. Storlien ◽  
J. MacDessi ◽  
N. D. Oakes ◽  
C. Kennedy ◽  
...  

It is not generally known whether impaired stimulation of muscle glucose metabolism in insulin-resistant states is specific to insulin stimulation. Our aim was to examine whether glucose uptake responded normally to exercise and postexercise recovery in insulin-resistant high-fat-fed (HFF) rats. Three-week HFF or Chow-fed [control (Con)] adult rats were studied 5 days after cannulation. Before, during, or immediately after (recovery) 50 min of treadmill exercise, bolus 2-deoxy-[3H]glucose and [14C]glucose were administered to estimate muscle glucose uptake (R'g) and glycogen incorporation rates. Mean exercise and recovery plasma glucose levels were similar in HFF and Con rats. In hindlimb muscles sampled, exercise and recovery R'g were similar in HFF and Con (e.g., red quadriceps exercise 104 +/- 13 vs. 113 +/- 8, recovery 45.3 +/- 3.9 vs. 47.7 +/- 4.5 mumol.100 g-1.min-1, respectively). Moreover, muscle glucose transporter (GLUT-4) content was not reduced in HFF rats. Glycogen resynthesis accounted almost entirely for R'g during recovery and was equivalent between groups. We conclude that impaired muscle glucose uptake and glycogen synthesis in HFF rats are characteristic of insulin but not of exercise or postexercise stimulation.


Endocrinology ◽  
2005 ◽  
Vol 146 (4) ◽  
pp. 1818-1824 ◽  
Author(s):  
Merlijn Bazuine ◽  
Françoise Carlotti ◽  
Martijn J. W. E. Rabelink ◽  
Jort Vellinga ◽  
Rob C. Hoeben ◽  
...  

1999 ◽  
Vol 372 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Denise R. Cooper ◽  
James E. Watson ◽  
Niketa Patel ◽  
Philip Illingworth ◽  
Mildred Acevedo-Duncan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document