scholarly journals Differential Expression and Processing of Chromogranin A and Secretogranin II in Relation to the Secretory Status of Endocrine Cells

Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1408-1418 ◽  
Author(s):  
J. R. Peinado ◽  
R. Vazquez-Martinez ◽  
D. Cruz-García ◽  
A. Ruiz-Navarro ◽  
Y. Anouar ◽  
...  

Chromogranin A (CgA) and secretogranin II (SgII) are neuroendocrine secretory proteins that participate in regulation of the secretory pathway and also serve as precursors of biologically active peptides. To investigate whether there is a relationship between the expression, distribution, and processing of CgA and SgII and the degree of secretory activity, we employed two melanotrope subpopulations of the pituitary intermediate lobe that exhibit opposite secretory phenotypes. Thus, although one of the melanotrope subtypes shows high secretory activity, the other exhibits characteristics of a hormone storage phenotype. Our data show that SgII expression levels were higher in secretory melanotropes, whereas CgA expression showed similar rates in both cell subsets. The use of various antibodies revealed the presence of the unprocessed proteins as well as three CgA-derived peptides (67, 45, and 30 kDa) and six SgII-derived peptides (81, 66, 55, 37, 32, and 30 kDa) in both subpopulations. However, the smallest molecular forms of both granins predominated in secretory melanotropes, whereas the largest SgII- and CgA-immunoreactive peptides were more abundant in storage melanotropes, which is suggestive of a more extensive processing of granins in the secretory subset. Confocal microscopy studies showed that CgA immunoreactivity was higher in storage cells, but SgII immunoreactivity was higher in secretory melanotropes. Taken together, our results indicate that SgII and CgA are differentially regulated in melanotrope subpopulations. Thus, SgII expression is strongly related to the secretory activity of melanotrope cells, whereas CgA expression may not be related to secretory rate, but, rather, to hormone storage in this endocrine cell type.

1993 ◽  
Vol 106 (3) ◽  
pp. 731-740 ◽  
Author(s):  
E.S. Schweitzer

PC12 cells secrete the enzyme acetylcholinesterase (AChE) while at rest, and increase the overall rate of this secretion 2-fold upon depolarization. This behavior is different from the release of other markers by the constitutive or regulated secretory pathways in PC12 cells. Both the resting and stimulated release of AChE are unchanged after treatment with a membrane-impermeable esterase inhibitor, demonstrating that it represents true secretion and not shedding from the cell surface. The stimulation release of AChE is Ca(2+)-dependent, while the unstimulated release is not. Analysis of the molecular forms of AChE secreted by PC12 cells indicates that the release of AChE actually involves two concurrent but independent secretory processes, and that the G4 form of the enzyme is secreted constitutively, while both the G2 and G4 forms are secreted in a regulated manner, presumably from regulated secretory vesicles. Compared with other regulated secretory proteins, a much smaller fraction of cellular AChE is secreted, and the intracellular localization of this enzyme differs from that of other regulated secretory proteins. The demonstration that a cell line that exhibits regulated secretion of acetylcholine (ACh) is also capable of regulated secretion of AChE provides additional evidence for the existence of multiple regulated secretory pathways within a single cell. Moreover, there appears to be a selective packaging of different molecular forms of AChE into the regulated versus the constitutive secretory pathway. Both the specificity of sorting of AChE and the regulation of its secretion suggest that AChE may play a more dynamic role in synaptic function than has been recognized previously.


2009 ◽  
Vol 418 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Hansruedi Stettler ◽  
Nicole Beuret ◽  
Cristina Prescianotto-Baschong ◽  
Bérengère Fayard ◽  
Laurent Taupenot ◽  
...  

In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.


Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


1998 ◽  
Vol 13 (1) ◽  
pp. 3-9 ◽  
Author(s):  
L. Ferrari ◽  
E. Seregni ◽  
A. Martinetti ◽  
B Van Graafeiland ◽  
S. Nerini-Molteni ◽  
...  

Neuroendocrine tumors (NETs) are rare neoplasms characterized by a low proliferative index and, in some cases, a favorable prognosis. These tumors often overproduce and release biologically active substances that are responsible for severe syndromes. Tumor marker measurement provides the clinician with useful information for the management of NET patients. The substances released by overproducing tumors are currently used as biomarkers, but there is a need for sensitive markers also for the “biochemically silent” NETs. The most effective and reliable blood marker available today is chromogranin A (CgA). Because of its high sensitivity and specificity, this glycoprotein can be used for the diagnosis, prognosis and follow-up of NETs. Furthermore, CgA measurement can be used for monitoring those tumors not overproducing or releasing any hormones or biological amines. This paper is a synthetic review on the value of CgA in NET management and reports our experiences with CgA measurement in NET patients.


1990 ◽  
Vol 69 (8) ◽  
pp. 1494-1499 ◽  
Author(s):  
A. Letić-Gavrilović ◽  
K. Abe

The localizations of chromogranins A, B, and C, neuron-specific enolase (NSE, γγ-type) and non-NSE (αα-type), and different forms of somatostatins were immunocytochemically identified. The localizations were compared with those of epidermal growth factor (EGF) and nerve growth factor (NGF) in the submandibular salivary glands (SMG) of male mice at five to six weeks of age, with use of a variety of antibodies and the peroxidase-antiperoxidase (PAP) and avidin-biotin complex (ABC) detection methods. In the SMG of male mice, the major chromogranin present was chromogranin A, whereas chromogranins B and C were not detected at these ages by either method. Chromogranin Alike immunoreactivity was located in the granular convoluted tubule (GCT) cells of the SMG, whereas non-NSE immunoreactivity was observed throughout the duct system and in some acinar-associated cells. NSE was not detected in any part of the SMG. The distribution of chromogranin A and somatostatins in the GCT cells was similar to that of EGF and NGF. Our results strongly suggest that chromogranin A and somatostatins, but not chromogranin B or C, may be useful as a means of differentiation of the cells in the duct system of the SMG responsible for the production of biologically-active factors.


1997 ◽  
Vol 8 (9) ◽  
pp. 1805-1814 ◽  
Author(s):  
J S Cox ◽  
R E Chapman ◽  
P Walter

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.


2014 ◽  
Vol 206 (5) ◽  
pp. 635-654 ◽  
Author(s):  
Christine Kienzle ◽  
Nirakar Basnet ◽  
Alvaro H. Crevenna ◽  
Gisela Beck ◽  
Bianca Habermann ◽  
...  

The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132–amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1–dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca2+ entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca2+ import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1–dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca2+ influx and secretory cargo sorting.


1990 ◽  
Vol 1 (5) ◽  
pp. 415-424 ◽  
Author(s):  
T Kreiner ◽  
H P Moore

Membrane traffic has been shown to be regulated during cell division. In particular, with the use of viral membrane proteins as markers, endoplasmic reticulum (ER)-to-Golgi transport in mitotic cells has been shown to be essentially blocked. However, the effect of mitosis on other steps in the secretory pathway is less clear, because an early block makes examination of following steps difficult. Here, we report studies on the functional characteristics of secretory pathways in mitotic mammalian tissue culture cells by the use of a variety of markers. Chinese hamster ovary cells were transfected with cDNAs encoding secretory proteins. Consistent with earlier results following viral membrane proteins, we found that the overall secretory pathway is nonfunctional in mitotic cells, and a major block to secretion is at the step between ER and Golgi: the overall rate of secretion of human growth hormone is reduced at least 10-fold in mitotic cells, and export of truncated vesicular stomatitis virus G protein from the ER is inhibited to about the same extent, as judged by acquisition of endoglycosidase H resistance. To ascertain the integrity of transport from the trans-Golgi to plasma membrane, we followed the secretion of sulfated glycosaminoglycan (GAG) chains, which are synthesized in the Golgi and thus are not subject to the earlier ER-to-Golgi block. GAG chains are valid markers for the pathway taken by constitutive secretory proteins; both protein secretion and GAG chain secretion are sensitive to treatment with n-ethyl-maleimide and monensin and are blocked at 19 degrees C. We found that the extent of GAG-chain secretion is not altered during mitosis, although the initial rate of secretion is reduced about twofold in mitotic compared with interphase cells. Thus, during mitosis, transport from the trans-Golgi to plasma membrane is much less hindered than ER-to-Golgi traffic. We conclude that transport steps are not affected to the same extent during mitosis.


1988 ◽  
Vol 12 (11) ◽  
pp. 877-884 ◽  
Author(s):  
R. Weiler ◽  
R. Fischer-Colbrie ◽  
K. W. Schmid ◽  
H. Feichtinger ◽  
G. Bussolati ◽  
...  

1998 ◽  
Vol 332 (3) ◽  
pp. 593-610 ◽  
Author(s):  
Peter ARVAN ◽  
David CASTLE

Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.


Sign in / Sign up

Export Citation Format

Share Document