scholarly journals The Substrate-Binding Domain of 21-Hydroxylase, the Main Autoantigen in Autoimmune Addison’s Disease, Is an Immunodominant T Cell Epitope

Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2411-2416 ◽  
Author(s):  
Eystein S. Husebye ◽  
Eirik Bratland ◽  
Geir Bredholt ◽  
Mati Fridkin ◽  
Molly Dayan ◽  
...  

The steroidogenic enzyme 21-hydroxylase (21OH) is the main autoantigen in autoimmune primary adrenal failure (Addison’s disease). Autoantibodies against 21OH are immunological markers of an ongoing autoimmune process but are not directly involved in the tissue destruction. Autoreactive T cells are thought to mediate tissue damage, but the T cell antigen(s) has not been identified. To find out whether 21OH contains important immunodominant epitopes for T cells, we first immunized BALB/c and SJL inbred mouse strains with recombinant 21OH and showed that lymph node cells proliferated effectively following in vitro stimulation with recombinant 21OH (stimulation indices (SI) 20–40). We further synthesized a series of peptides based on 21OH with amino acid sequences with propensity to bind to major histocompatibility complex class II molecules. Only a few peptides could trigger lymphocytes of 21OH-primed mice to proliferate. One of these, 21OH (342–361), stimulated effectively 21OH-primed lymph node cells of SJL mice (SI = 4–8) and also, although to a lesser extent, of BALB/c mice (SI = 2.5). When SJL mice were immunized with 21OH (342–361), the immunizing peptide as well as peptide 21OH (346–361) triggered a significant proliferative response (SI = 24). A peptide from another part of 21OH, namely 21OH (191–202), did not stimulate the 21OH (342–361)-primed cells. Moreover, stimulation of lymph node cells of mice immunized with 21OH (342–361) with 21OH resulted in a significant proliferative response. We conclude that 21OH (342–361) is an immunodominant determinant for T cells in SJL and probably BALB/c mice. 21OH (342–361) corresponds to the substrate binding site of the enzyme. The p342–361 region may be involved in the pathogenesis of autoimmune adrenal failure in humans.

1988 ◽  
Vol 168 (3) ◽  
pp. 1127-1143 ◽  
Author(s):  
H M Cooper ◽  
G Corradin ◽  
Y Paterson

In these studies, we have shown that the heme moiety of cyt c is a dominant T cell epitope that induces a large proliferative response in lymph node T cells derived from SJL and B10.A mice when presented on either unfixed or fixed syngeneic APCs. Not only is this vigorous response observed for cyt c-primed T cell populations but also for populations obtained from naive SJL or B10.A mice. The reactivity to the heme moiety falls under strict MHC restriction, in that it is present only in murine strains bearing either the I-Ak or I-As molecule and can be blocked by antibodies specific for these class II molecules. Therefore, these findings require that the current models describing the nature of T cell epitopes be extended to include nonpeptide molecules. Furthermore, as the heme moiety is ubiquitous throughout the organism, although sequestered within proteins, the existence of heme-reactive T cell populations in unprimed animals provides another example of the existence of self-reactive T cell clones.


1977 ◽  
Vol 146 (1) ◽  
pp. 132-145 ◽  
Author(s):  
N M Ponzio ◽  
C S David ◽  
D C Shreffler ◽  
G J Thorbecke

The results of studies on the reticulum cell sarcoma (RCS) tumors of SJL/J mice presented here, indicate that spontaneous tumors, which arise in older mice, also possess the capacity to induce the vigorous proliferative response in syngenetic T lymphocytes that are characteristic of the transplantable RCS lines. Analysis of cell surface antigens revealed the presence of Ia determinats on gradient-purified transplantable RCS tumor cells; however, these cells did not express Thy 1.2, nIg, or, any of the viral proteins that were tested for by specific antisera. Pretreatment of RCS cells with anti-Ia sera and complement-deleted cells that were stimulatory for syngenetic T lymphocytes, and addition of anti-Ia sera directly to cultures blocked the proliferative response at the stimulator (RCS) cell level. Lymph node cells from H-2(8) strains other than SJL/J, including A.SW and B10.S also gave proliferative responses to RCS cells, although lower in magnitude. A requirement on the part of responding cells for identity with RCS cells at the Ir region was indicated by the finding that A.TH but not A.TL lymph node cells responded to RCS. It is concluded that RCS cells stimulate Ir-region identical T cells (without evidence of presensitization) through a modification in the expression of Ia antigens on the surface of the tumor cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander Hellesen ◽  
Sigrid Aslaksen ◽  
Lars Breivik ◽  
Ellen Christine Røyrvik ◽  
Øyvind Bruserud ◽  
...  

ObjectivesCD8+ T cells targeting 21-hydroxylase (21OH) are presumed to play a central role in the destruction of adrenocortical cells in autoimmune Addison’s disease (AAD). Earlier reports have suggested two immunodominant CD8+ T cell epitopes within 21OH: LLNATIAEV (21OH342-350), restricted by HLA-A2, and EPLARLEL (21OH431-438), restricted by HLA-B8. We aimed to characterize polyclonal CD8+ T cell responses to the proposed epitopes in a larger patient cohort with AAD.MethodsRecombinant fluorescent HLA-peptide multimer reagents were used to quantify antigen-specific CD8+ T cells by flow cytometry. Interferon-gamma (IFNγ) Elispot and biochemical assays were used to functionally investigate the 21OH-specific T cells, and to map the exactly defined epitopes of 21OH.ResultsWe found a significantly higher frequency of HLA-A2 restricted LLNATIAEV-specific cells in patients with AAD than in controls. These cells could also be expanded in vitro in an antigen specific manner and displayed a robust antigen-specific IFNγ production. In contrast, only negligible frequencies of EPLARLEL-specific T cells were detected in both patients and controls with limited IFNγ response. However, significant IFNγ production was observed in response to a longer peptide encompassing EPLARLEL, 21OH430-447, suggesting alternative dominant epitopes. Accordingly, we discovered that the slightly offset ARLELFVVL (21OH434-442) peptide is a novel dominant epitope restricted by HLA-C7 and not by HLA-B8 as initially postulated.ConclusionWe have identified two dominant 21OH epitopes targeted by CD8+ T cells in AAD, restricted by HLA-A2 and HLA-C7, respectively. To our knowledge, this is the first HLA-C7 restricted epitope described for an autoimmune disease.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1202-1202
Author(s):  
Xingmin Feng ◽  
Zenghua Lin ◽  
Marie Desierto ◽  
Keyvan Keyvanfar ◽  
Daniela Malide ◽  
...  

Abstract Acquired aplastic anemia (AA) is bone marrow (BM) failure characterized by pancytopenia and marrow hypocellularity, in most patients due to immune attack by T cells that target hematopoietic stem and progenitor cells. Most patients respond to immunosuppressive therapy, but relapse, especially on withdrawal of cyclosporine A (CsA), occurs frequently (Scheinberg P, Am J Hematol., 2014). Rapamycin has been successful in some human autoimmune diseases and in mouse models of autoimmunity; rapamycin also appears to induce tolerance, as for example in the organ transplant setting. We have developed murine models of BM failure; animals can be salvaged by biologics and drugs that are effective in humans with AA. One purpose of these models is to test potential new therapies. We have compared rapamycin with customary immunosuppression by CsA. Infusion of lymph node cells from C57BL6 (B6) donor mice into CByB6F1 (F1) recipient mice (MHC-mismatched) induced massive BM destruction by activated T cells. Treatment with rapamycin (2 mg/kg/day, starting 1 hour post lymphocyte injection and continued for 2 weeks, n=9) effectively ameliorated pancytopenia and improved BM cellularity, better than did maximal dosing with CsA (50 mg/kg/day, starting 1 hour post lymphocyte injection, continued for 5 days, n=8) (Fig 1A). Rapamycin eliminated most BM-infiltrating CD8+ T cells, while CsA had less effect on CD8+ T cells than did rapamycin. Elimination of BM infiltrated T cells and restoration of megakaryocytes by rapamycin was visualized by confocal microscopy using whole-mounts of sternum, for which donor B6 lymph node cells were replaced with B6-DsRed lymph node cells. Plasma cytokines were measured by Luminex: IFNg, TNFa, IL-2, MIP1b, RANTES, sCD137 (all p < 0.001) were increased in BM failure mice compared with the control animals, indicating an inflammatory environment in AA. Rapamycin reduced these cytokines (p < 0.001) but increased Th2 cytokines such as IL-4 and IL-10 (p < 0.001) levels. CsA only decreased sCD137, reversely it even increased IFNg levels. Transcriptome analysis using pooled FACS-sorted CD4+ and CD8+ T cells from BM focusing on genes related to T cell functions revealed that rapamycin suppressed expression of Icam1, and Tnfsf14 in CD8+ T cells, and Cd27, Lgals3, Il10ra, Itga1, Tbx21, Gzmb, Tnfsf14 and Cd70 in CD4+ T cells, but increased Il-4, Il-2ra, and Tnfrsf8 expression in CD4+ T cells compared with AA mice. CsA suppressed Lgals3 in CD8+ T cells and Cd70 in CD4+ T cells, suggesting differential mechanisms of action by these two immunosuppressive drugs. All untreated AA mice (n=6) died within 3 weeks post lymphocyte infusion, while all mice treated with rapamycin for 2 weeks (n=8) survived until study termination at 7 weeks; similar results were obtained when we tested delayed treatment with rapamycin (starting 3 days post lymphocyte injection and continued for 10 days, n=8) in BM failure mice; but brief exposure to rapamycin, for only 5 days from 1 hour post lymphocyte infusion (n=8), could not rescue mice, suggesting a requirement for sustained administration. In contrast, all animals treated with CsA (n=6) died within 5 weeks (Fig 1B). We also tested the effect of rapamycin on antigen-specific T cells in another BM failure model induced by infusion of lymphocytes from B6 donor mice into C.B10-H2b /LilMcd recipient mice (MHC-matched but minor antigen-mismatched, n=10), in which BM destruction is mediated by H60-specific cytotoxic T cells (CTL) (Chen J, JI, 2007). Similar results were observed. Flow cytometry revealed massive expansion of H60-specific CTL in BM of untreated AA mice, rapamycin eliminated BM CD8+ T cell infiltration. CsA decreased BM CD8+ T cells, but had much weaker effect on H60 CTLs (Fig 1C). In summary, rapamycin is effective in treatment of AA murine models, which holds implications in the application in immune-mediated pathophysiologies in the laboratory and in the clinic. Compared with CsA, rapamycin suppressed expression of T cell activation genes more broadly, increased Th2 cytokines, eliminated antigen-specific T cells, and had better survival rate in animal BM failure model, supporting a clinical trial of rapamycin to prevent relapse and induce tolerance in patients with AA, many of whom are dependent on CsA administration for support of blood counts but at risk of CsA nephrotoxicity. Disclosures No relevant conflicts of interest to declare.


1986 ◽  
Vol 234 (2) ◽  
pp. 449-452 ◽  
Author(s):  
M Yoshioka ◽  
N Yoshioka ◽  
M Z Atassi

This paper reports the localization of the regions on the beta-chain that are recognized by T cells from mice immunized with haemoglobin. The 14 overlapping peptides encompassing the entire beta-chain were examined in vitro for their ability to stimulate lymph-node cells from haemoglobin-primed B10.D2 (H-2d) and SJL (H-2s) mice. Several regions of the molecule (T sites) were found to stimulate haemoglobin-primed lymph-node cells. This strategy has enabled the localization of the full profile of T-cell recognition of the beta-chain by these mouse strains. Some of the regions that stimulated T cells appeared to coincide with those recognized by antibodies (i.e. B cells). It is noteworthy that, in addition to sites recognized by both T and B cells, the protein has other sites that are recognized exclusively by T cells and to which no detectable antibody response is directed.


Parasitology ◽  
1997 ◽  
Vol 115 (1) ◽  
pp. 91-96 ◽  
Author(s):  
F. GANAPAMO ◽  
B. RUTTI ◽  
M. BROSSARD

BALB/c mice infested with larvae or nymphs of Ixodes ricinus develop in their lymph nodes a T cell-specific immune response triggered by salivary gland soluble antigens (SGA). SGA are apparently conserved in the 3 biological stages of I. ricinus ticks and are species specific. SGA derived from partially fed females I. ricinus stimulate lymph node T cells from mice infested with I. ricinus larvae or nymphs. In contrast, lymph node cells from mice infested with Amblyomma hebraeum nymphs do not respond. A chromatographic fraction enriched with a 65 kDa protein (IrSG65) isolated from salivary glands of I. ricinus partially fed females induces in vitro a specific T cell proliferation of lymph node cells from mice infested with I. ricinus nymphs. The depletion of CD4+ T cells drastically reduces the ability of lymphocytes from infested mice to proliferate after IrSG65 stimulation.


1976 ◽  
Vol 144 (6) ◽  
pp. 1545-1553 ◽  
Author(s):  
Z Nagy ◽  
B E Elliott ◽  
M Nabholz

Responder cells [C57BL/6J X A.TL)F1 lymph node cells depleted of bursa equivalent-derived (B) cells by filtration through nylon wool columns] were activated against incompatible K-region and I-region products together under conditions where these antigens are presented on separate stimulator cells. The resulting T blasts were stained with different concentrations of antisera directed against incompatible stimulator K-region or I-region products, or both. We obtained results that strongly suggest that in these cultures each activated responder blast stains with antiserum directed against either K-region or I-region products, but not both. Responder blasts from the same cultures were treated with antiserum and complement (C) directed against either Ly-1.2 or Ly-2.2 T-cell-specific surface antigens. Anti-Ly-1.2 serum and C specifically eliminates virtually all responder blasts staining with antiserum directed against stimulator I-region products; whereas anti-Ly-2.2 serum reduces to background levels the proportion of cells staining with antiserum against stimulator K-region products. The results obtained suggest that T cells binding stimulator K-region and I-region products, respectively, belong to two different subclasses distinguishable by their Ly phenotypes. Possible explanations for this association of T- cell subclass and specificity are discussed.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S81-S81
Author(s):  
J Lanceta ◽  
W Xue ◽  
M Hurford ◽  
H Wu

Abstract Casestudy Epstein-Barr virus (EBV)-associated peripheral T-cell lymphomas are a group of aggressive neoplasms with a geographic predilection for South America and Asia, but are very rare in Western populations. Results We report a case of a 74-year-old Caucasian female who presented with pancytopenia and B symptoms with EBV-IgG detected on admission. Past medical history included: ITP, chronic urticaria, and recently diagnosed myelodysplastic syndrome (MDS) on bone marrow biopsy one month prior to admission. Excisional biopsies of an enlarged right neck lymph node (repeated within 6 months) and right axillary lymph node five years ago were negative for a lymphoproliferative disorder at the time. Repeated bone marrow biopsy, performed during the current admission, confirmed the diagnosis of MDS, with scattered T-cells without aberrant immunophenotype. Despite aggressive treatment from multiple specialties, the patient deteriorated and expired four weeks later from complications of MDS. At autopsy, there was diffuse lymphadenopathy involving the mediastinum, axilla, pelvis and peripancreatic fat. Lymph node sections demonstrated nodal architecture effacement by diffuse, vaguely nodular lymphoid infiltrates. Histologically, the infiltrates were composed of medium to large lymphocytes with round to slight irregular nuclei, rare Reed-Sternberg-like multinucleated cells, clumped chromatin, and indistinct nucleoli. Individual cell necrosis was abundant with mitotic figures readily identifiable. Immunohistochemistry revealed CD2+ CD3+ neoplastic T-cells that co-express MUM1 and a subset of CD30, while negative for CD4, CD5, CD8, CD56, ALK1, and TDT. EBV-encoded RNA in-situ hybridization was focally positive. The final postmortem diagnosis was peripheral T-cell lymphoma, not otherwise specified (NOS), with focal EBV positivity. Conclusion Co-existence of a de-novo MDS and non-Hodgkin lymphoma without any prior chemotherapeutic exposure is a highly unusual finding, although MDS-like presentations can occur with EBV-associated lymphomas. Peripheral T-cell lymphoma, NOS is an aggressive lymphoma and EBV positivity has been found correlated with a poor prognosis. This case demonstrates how postmortem examination remains an important tool in clinical- pathological correlation and highlights the potential pathogenetic role EBV plays in MDS and T-cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document