scholarly journals All-trans Retinoic Acid Induces in Vitro Angiogenesis via Retinoic Acid Receptor: Possible Involvement of Paracrine Effects of Endogenous Vascular Endothelial Growth Factor Signaling

Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1412-1423 ◽  
Author(s):  
Akiko Saito ◽  
Akira Sugawara ◽  
Akira Uruno ◽  
Masataka Kudo ◽  
Hiroyuki Kagechika ◽  
...  

A natural retinoid all-trans retinoic acid (ATRA) regulates a variety of important cellular functions via retinoic acid receptor (RAR). ATRA has therapeutically been used against various malignancies including acute promyelocytic leukemia. Recently ATRA has also been recognized to be beneficial against atherosclerotic vascular disorders. However, its effects on angiogenesis remain controversial. We therefore examined ATRA effects on in vitro angiogenesis in terms of capillary-like tube formation using human umbilical vein endothelial cells (HUVECs)/normal human dermal fibroblast (NHDF) coculture. ATRA as well as RAR agonist Am80 significantly induced capillary-like tube formation. The ATRA-induced tube formation was inhibited by coincubation with RAR antagonist LE540/LE135. HUVEC proliferation, but not its migration, was also induced by ATRA. The ATRA-induced tube formation was completely abolished by coincubation with vascular endothelial growth factor (VEGF) neutralizing antibody or with VEGF receptor (VEGFR)-2 (KDR) neutralizing antibody, but not VEGFR-1 (Flt-1) neutralizing antibody. ATRA and Am80 induced VEGF secretion in the coculture as well as VEGF secretion/mRNA expression in NHDFs. Transcription activity of human VEGF gene promoter in NHDFs was stimulated by ATRA, which was augmented by RAR overexpression. ATRA also induced VDGFR-2/KDR mRNA expression in HUVECs. Moreover, ATRA-induced secretion of hepatocyte growth factor as well as angiopoietin-2 in the coculture. Taken together, ATRA may have induced angiogenesis via RAR mainly by stimulation of HUVEC proliferation and enhancement of endogenous VEGF signaling and in part by induction of hepatocyte growth factor and angiopoietin-2 production. Retinoids may therefore be potential candidates for therapeutic angiogenesis against ischemic vascular disorders.

Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1264-1270 ◽  
Author(s):  
Meng Kian Tee ◽  
Jean-Louis Vigne ◽  
Robert N. Taylor

Infiltrating neutrophil granulocytes are a particularly rich source of vascular endothelial growth factor (VEGF) in the endometrium and may contribute to the angiogenesis of endometriosis lesions. The objective of this study is to evaluate the expression and regulation of VEGF in endometrial neutrophils and in a model of neutrophil differentiation relevant to endometriosis. Immunohistochemistry was performed on endometriosis patient biopsies and cultured neutrophil-like HL-60 cells were assessed. The study was set in a reproductive biology division within an academic medical center. Endometrial biopsies were performed on women with endometriosis and HL-60 cells were treated with all-trans retinoic acid (atRA) and dimethyl sulfoxide in vitro. Immunofluorescence histochemistry, VEGF mRNA and protein quantification, and transfection studies of VEGF gene promoter-luciferase constructs were all main outcome measures. Immunofluorescence studies verified the presence of neutrophils in eutopic endometrium from women with endometriosis. Examination of the regulation of VEGF using differentiated HL-60 cells as a model, revealed that atRA induced a dose- and time-dependent suppression of VEGF mRNA and protein. Transient transfection, truncation, EMSA, and site-directed mutagenesis of human VEGF promoter-luciferase constructs in HL-60 cells indicated that atRA repressed VEGF gene transcription via a direct repeat 1 element located between −443 and −431 bp relative to the transcription initiation site. Because retinoic acid is synthesized de novo in endometrial cells under the influence of progesterone, our findings suggest that the up-regulated VEGF and angiogenesis in tissue from women with endometriosis may reflect failure of neutrophil differentiation in these cases, and provide a rationale for retinoid therapy in this condition.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 984-993 ◽  
Author(s):  
Valérie Jouan ◽  
Xavier Canron ◽  
Monica Alemany ◽  
Jacques P. Caen ◽  
Gérard Quentin ◽  
...  

In this study, we examined in detail the interaction of platelet factor-4 (PF-4) with fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF) and the effect of PF-4–derived synthetic peptides. We show that a peptide between amino acids 47 and 70 that contains the heparin-binding lysine-rich site inhibits FGF-2 or VEGF function. This is based on the following observations: PF-4 peptide 47-70 inhibited FGF-2 or VEGF binding to endothelial cells; it inhibited FGF-2 or VEGF binding to FGFRs or VEGFRs in heparan sulfate–deficient CHO cells transfected with FGFR1 (CHOFGFR1) or VEGFR2 (CHOmVEGFR2) cDNA; it blocked proliferation or tube formation in three-dimensional angiogenesis assays; and, finally, it competed with the direct association of 125I-PF-4 with FGF-2 or VEGF, respectively, and inhibited heparin-induced FGF-2 dimerization. A shorter C-terminal peptide (peptide 58-70), which still contained the heparin-binding lysin-rich site, had no effect. Peptide 17-58, which is located in the central part of the molecule, although it does not inhibit FGF-2 or VEGF binding or biologic activity in endothelial cells, inhibited heparin-dependent binding of125I-FGF-2 or 125I-VEGF to CHOmFGFR1 or CHOmVEGFR2 cells, respectively. Shorter peptides (peptides 34-58 and 47-58) did not show any of these effects.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Baoqi Sun ◽  
Yiheng Ding ◽  
Xin Jin ◽  
Shuo Xu ◽  
Hong Zhang

AbstractLong non-coding RNA (lncRNA) H19 has been implicated in tumor angiogenesis. However, whether H19 regulates the progression of corneal neovascularization (CNV) is unclear. The present study aimed to determine the function of H19 in CNV and its possible molecular mechanism. Here, we found that the H19 levels were remarkably increased in vascularized corneas and basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs). In vitro, H19 up-regulation promoted proliferation, migration, tube formation and vascular endothelial growth factor A (VEGFA) expression in HUVECs, and it was found to down-regulate microRNA-29c (miR-29c) expression. Bioinformatics analysis revealed that H19 mediated the above effects by binding directly to miR-29c. In addition, miR-29c expression was markedly reduced in vascularized corneas and its expression also decreased in bFGF-treated HUVECs in vitro. MiR-29c targeted the 3′ untranslated region (3′-UTR) of VEGFA and decreased its expression. These data suggest that H19 can enhance CNV progression by inhibiting miR-29c, which negatively regulates VEGFA. This novel regulatory axis may serve as a potential therapeutic target for CNV.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junxiu Zhang ◽  
Ke Mao ◽  
Qing Gu ◽  
Xingwei Wu

Background: The purpose of this study is to investigate the antiangiogenic effect of Sanguinarine chloride (SC) on models of age-related macular degeneration (AMD) both in vivo and in vitro.Methods: Choroidal neovascularization (CNV) was conducted by laser photocoagulation in C57BL6/J mice. SC (2.5 μM, 2 μl/eye) was intravitreally injected immediately after laser injury. The control group received an equal amount of PBS. 7 days after laser injury, CNV severity was evaluated using fundus fluorescein angiography, hematoxylin and eosin (H&E) staining, and choroid flat-mount staining. Vascular endothelial growth factor (VEGF) expression in the retina/choroid complex was measured by western blot analysis and ELISA kit. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to investigate the effects of SC on cell tube formation, migration, and cytotoxicity. The expression of VEGF-induced expression of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (AKT), mitogen-activated protein kinases (p38-MAPK) in vitro and laser induced VEGF expression in vivo were also analyzed.Results: SC (≤2.5 μM) was safe both in vitro and in vivo. Intravitreal injection of SC restrained the formation of laser induced CNV in mice and decreased VEGF expression in the laser site of the retina/choroid complex. In vitro, SC inhibited VEGF-induced tube formation and endothelial cell migration by decreasing the phosphorylation of AKT, ERK1/2, and p38-MAPK in HRMECs.Conclusions: SC could inhibit laser-induced CNV formation via down-regulating VEGF expression and restrain the VEGF-induced tube formation and endothelial migration. Therefore, SC could be a potential candidate for the treatment of wet AMD.


Sign in / Sign up

Export Citation Format

Share Document