scholarly journals Overexpression of γ-Glutamyltransferase in Transgenic Mice Accelerates Bone Resorption and Causes Osteoporosis

Endocrinology ◽  
2007 ◽  
Vol 148 (6) ◽  
pp. 2708-2715 ◽  
Author(s):  
Kiyoshi Hiramatsu ◽  
Yutaro Asaba ◽  
Sunao Takeshita ◽  
Yuji Nimura ◽  
Sawako Tatsumi ◽  
...  

We previously identified γ-glutamyltransferase (GGT) by expression cloning as a factor inducing osteoclast formation in vitro. To examine its pathogenic role in vivo, we generated transgenic mice that overexpressed GGT in a tissue-specific manner utilizing the Cre-loxP recombination system. Systemic as well as local production of GGT accelerated osteoclast development and bone resorption in vivo by increasing the sensitivity of bone marrow macrophages to receptor activator of nuclear factor-κB ligand, an essential cytokine for osteoclastogenesis. Mutated GGT devoid of enzyme activity was as potent as the wild-type molecule in inducing osteoclast formation, suggesting that GGT acts not as an enzyme but as a cytokine. Recombinant GGT protein increased receptor activator of nuclear factor-κB ligand expression in marrow stromal cells and also stimulated osteoclastogenesis from bone marrow macrophages at lower concentrations. Thus, GGT is implicated as being involved in diseases characterized by accelerated osteoclast development and bone destruction and provides a new target for therapeutic intervention.

Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3253-3259 ◽  
Author(s):  
Kabsun Kim ◽  
Jung Ha Kim ◽  
Junwon Lee ◽  
Hye Mi Jin ◽  
Hyun Kook ◽  
...  

Abstract Receptor activator of nuclear factor κB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macrophage lineage cells (BMMs) inhibits the formation of TRAP+ multinuclear osteoclasts, but phagocytic activity of BMMs is retained. Furthermore, overexpression of MafB in BMMs attenuates the gene induction of NFATc1 and osteoclast-associated receptor (OSCAR) during RANKL-mediated osteoclastogenesis. In addition, MafB proteins interfere with the DNA-binding ability of c-Fos, Mitf, and NFATc1, inhibiting their transactivation of NFATc1 and OSCAR. Furthermore, reduced expression of MafB by RNAi enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, our results suggest that MafB can act as an important modulator of RANKL-mediated osteoclastogenesis.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Shang Sang ◽  
Zhichang Zhang ◽  
Shu Qin ◽  
Changwei Li ◽  
Yang Dong

Giant cell tumor (GCT) of bone is an aggressive skeletal tumor characterized by localized bone resorption. MicroRNA-16-5p (miR-16-5p) has been reported to be downregulated in lesions of patients with GCT, but little is known about its role in GCT. To explore the underlying function of miR-16-5p in GCT, we first detected its expression in patients with GCT. The results showed that osteoclast formation increased, whereas miR-16-5p expression considerably decreased with the severity of bone destruction. Furthermore, we found that miR-16-5p expression considerably decreased with the progression of receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclastogenesis. Functionally, miR-16-5p mimics significantly reduced RANKL-induced osteoclast formation. However, treatment with an inhibitor of miR-16-5p significantly promoted osteoclastogenesis. These findings reveal that miR-16-5p inhibits osteoclastogenesis and that it may represent a therapeutic target for giant cell tumor of bone.


2021 ◽  
Author(s):  
Wenkan Zhang ◽  
guangyao Jiang ◽  
xiaozhong zhou ◽  
leyi huang ◽  
jiahong meng ◽  
...  

Abstract Background: Excessive activation of osteoclasts is an important cause of imbalance in bone remodeling, which further leads to pathological bone destruction. This is a clear feature of many osteolytic diseases, such as rheumatoid arthritis, osteoporosis, and osteolysis around the prosthesis. Based on the fact that many natural compounds have therapeutic potential for treating these diseases by suppressing osteoclast formation and function, we proved that α-mangostin, a natural compound isolated from mango, might be a promising choice. α-mangostin was described had anti‐inflammatory, anticancer and cardioprotective effects. Methods: We evaluated the therapeutic effect of α-mangostin in the process of osteoclast formation and bone resorption. The receptor activator of NF-κB ligand (RANKL) induces the formation of osteoclasts in vitro, and the potential pathways of α-mangostin to inhibit the differentiation and function of osteoclasts were explored. A mouse model of LPS‐induced calvarial osteolysis was establish. Subsequently, micro-CT, histology, etc. were used to evaluate the effect of α-mangostin in preventing inflammatory osteolysis.Results: In our study, we found that α-mangostin could inhibit RANKL-induced osteoclastogenesis and reduced osteoclast‐related gene expression in vitro. Besides, F-actin ring immunofluorescence and resorption pit assay indicated that α-mangostin can also destroy the function of osteoclast. Furthermore, α-mangostin achieved these effects by disrupting the activation of NF-κB/MAPKs signaling pathways. In vivo, our data revealed that α-mangostin could protect mouse calvarial from osteolysis. Conclusions: Together, our study demonstrates that α-mangostin exhibit the ability of inhibiting steoclastogenesis both in vitro and in vivo, and may be a potential option for treating osteoclast‐related diseases.


2021 ◽  
Vol 30 ◽  
pp. 096368972199032
Author(s):  
Wei Wang ◽  
Bo Wang

Osteoporosis is a common bone disease that is characterized by decreased bone mass and fragility fractures. Isofraxidin is a hydroxy coumarin with several biological and pharmacological activities including an anti-osteoarthritis effect. However, the role of isofraxidin in osteoporosis has not yet been investigated. In the present study, we used receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast formation in primary bone marrow macrophages (BMMs). Our results showed that RANKL treatment significantly increased tartrate-resistant acid phosphatase (TRAP) activity, as well as the expression of osteoclastogenesis-related markers including MMP-9, c-Src, and cathepsin K at both mRNA and protein levels; however, these effects were inhibited by isofraxidin in BMMs. In addition, luciferase reporter assay demonstrated that isofraxidin treatment suppressed the RANKL-induced an increase in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) transcriptional activity. Besides, the decreased expression level of IκBα and increased levels of p-p65, p-IκBα, and p-Akt in RANKL-induced BMMs were attenuated by isofraxidin. Moreover, NFATc1 overexpression rescued the anti-osteoclastogenic effect of isofraxidin with increased expression levels of MMP-9, c-Src, and cathepsin K. Taken together, these findings indicated that isofraxidin inhibited RANKL-induced osteoclast formation in BMMs via inhibiting the activation of NF-κB/NFATc1 and Akt/NFATc1 signaling pathways. Thus, isofraxidin might be a therapeutic agent for the treatment of osteoporosis.


Planta Medica ◽  
2021 ◽  
Author(s):  
Mengqin Hong ◽  
Xingyu Fan ◽  
Shengxiang Liang ◽  
Wang Xiang ◽  
Liting Chen ◽  
...  

AbstractRheumatoid arthritis is a chronic autoimmune disease characterized by the infiltration of synovial inflammatory cells and progressive joint destruction. Total flavonoids of Bidens pilosa have been used against inflammation in rheumatoid arthritis, but its role in bone destruction remains to be explored. The aim of this paper was to study whether total flavonoids of B. pilosa relieve the severity of collagen-induced arthritis in rats, particularly whether it regulates the production of proinflammatory cytokines and the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin signaling pathway. In this research, a collagen-induced disease model was induced in adult rats by subcutaneous injection of collagen II. Total flavonoids of B. pilosa at different doses (40, 80, and 160 mg/kg/d) were administered intragastrically, while methotrexate (1 mg/kg/w) was injected intraperitoneally as a positive control. Paw swelling, arthritis score, and body weight were assessed and evaluated. The severity of joint damage was determined using X-ray and confirmed by histopathology. The expression levels of receptor activator of nuclear factor-κB ligand, osteoprotegerin, IL-1β, IL-17, and TNF in the serum and tissue were assayed using ELISA and immunohistochemistry. We found that total flavonoids of B. pilosa attenuated collagen-induced arthritis at the macroscopic level, and total flavonoids of B. pilosa-treated rats showed reduced paw swelling, arthritis scores, and X-ray appearance of collagen-induced arthritis in addition to improved histopathological results. These findings were consistent with reduced serum and tissue receptor activator of nuclear factor-κB ligand, TNF, IL-1β, and IL-17 levels but increased osteoprotegerin levels. Our data suggest that total flavonoids of B. pilosa attenuate collagen-induced arthritis by suppressing the receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin pathway and the subsequent production of proinflammatory cytokines. In addition, total flavonoids of B. pilosa may be a promising therapeutic candidate for the management of rheumatoid arthritis.


2005 ◽  
Vol 185 (3) ◽  
pp. 401-413 ◽  
Author(s):  
Jung-Min Koh ◽  
Young-Sun Lee ◽  
Chang-Hyun Byun ◽  
Eun-Ju Chang ◽  
Hyunsoo Kim ◽  
...  

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although α-lipoic acid (α-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of α-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor κB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that α-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, α-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, α-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by α-LA without any posttranslational processing. In contrast, α-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that α-LA suppresses osteoclastogenesis by directly inhibiting RANKL–RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that α-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.


Sign in / Sign up

Export Citation Format

Share Document