scholarly journals A Revised Role for P-Glycoprotein in the Brain Distribution of Dexamethasone, Cortisol, and Corticosterone in Wild-Type and ABCB1A/B-Deficient Mice

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5244-5253 ◽  
Author(s):  
Brittany L. Mason ◽  
Carmine M. Pariante ◽  
Sarah A. Thomas
Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2005 ◽  
Vol 79 (21) ◽  
pp. 13509-13518 ◽  
Author(s):  
Jürgen Hausmann ◽  
Axel Pagenstecher ◽  
Karen Baur ◽  
Kirsten Richter ◽  
Hanns-Joachim Rziha ◽  
...  

ABSTRACT Borna disease virus (BDV) frequently causes meningoencephalitis and fatal neurological disease in young but not old mice of strain MRL. Disease does not result from the virus-induced destruction of infected neurons. Rather, it is mediated by H-2 k -restricted antiviral CD8 T cells that recognize a peptide derived from the BDV nucleoprotein N. Persistent BDV infection in mice is not spontaneously cleared. We report here that N-specific vaccination can protect wild-type MRL mice but not mutant MRL mice lacking gamma interferon (IFN-γ) from persistent infection with BDV. Furthermore, we observed a significant degree of resistance of old MRL mice to persistent BDV infection that depended on the presence of CD8 T cells. We found that virus initially infected hippocampal neurons around 2 weeks after intracerebral infection but was eventually cleared in most wild-type MRL mice. Unexpectedly, young as well as old IFN-γ-deficient MRL mice were completely susceptible to infection with BDV. Moreover, neurons in the CA1 region of the hippocampus were severely damaged in most diseased IFN-γ-deficient mice but not in wild-type mice. Furthermore, large numbers of eosinophils were present in the inflamed brains of IFN-γ-deficient mice but not in those of wild-type mice, presumably because of increased intracerebral synthesis of interleukin-13 and the chemokines CCL1 and CCL11, which can attract eosinophils. These results demonstrate that IFN-γ plays a central role in host resistance against infection of the central nervous system with BDV and in clearance of BDV from neurons. They further indicate that IFN-γ may function as a neuroprotective factor that can limit the loss of neurons in the course of antiviral immune responses in the brain.


2013 ◽  
Vol 38 (11) ◽  
pp. 2209-2219 ◽  
Author(s):  
Fionn E O'Brien ◽  
Richard M O'Connor ◽  
Gerard Clarke ◽  
Timothy G Dinan ◽  
Brendan T Griffin ◽  
...  

2015 ◽  
Vol 63 (7) ◽  
pp. 512-518 ◽  
Author(s):  
Fei Liu ◽  
Xiaoqing Wang ◽  
Zheng Li ◽  
Jin Li ◽  
Xiaomei Zhuang ◽  
...  

2019 ◽  
Author(s):  
Paul Dembny ◽  
Andrew G. Newman ◽  
Manvendra Singh ◽  
Michael Hinz ◽  
Michal Szczepek ◽  
...  

AbstractAlthough human endogenous retroviruses (HERVs) represent a substantial proportion of the human genome and some HERVs have been suggested to be involved in neurological disorders, little is known about their biological function and pathophysiological relevance. HERV-K(HML-2) comprises evolutionarily young proviruses transcribed in the brain. We report that RNA derived from an HERV-K(HML-2) env gene region binds to the human RNA-sensing Toll-like receptor (TLR) 8, activates human TLR8, as well as murine Tlr7, and causes neurodegeneration through TLR8 and Tlr7 in neurons and microglia. HERV-K(HML-2) RNA introduced extracellularly into the cerebrospinal fluid (CSF) of either C57BL/6 wild-type mice or APPPS1 mice, a mouse model for Alzheimer’s disease (AD), resulted in neurodegeneration. Tlr7-deficient mice were protected against neurodegenerative effects, but were re-sensitized towards HERV-K(HML-2) RNA when neurons ectopically expressed murine Tlr7 or human TLR8. Accordingly, transcriptome datasets of human brain samples from AD patients revealed a specific correlation of upregulated HERV-K(HML-2) and TLR8 RNA expression. HERV-K(HML-2) RNA was detectable more frequently in CSF from AD individuals compared to controls. Our data establish HERV-K(HML-2) RNA as an endogenous ligand for human TLR8 and murine Tlr7 and imply a functional contribution of specific human endogenous retroviral transcripts to neurodegenerative processes such as AD.


2001 ◽  
Vol 69 (9) ◽  
pp. 5573-5576 ◽  
Author(s):  
Sandra K. Halonen ◽  
Gregory A. Taylor ◽  
Louis M. Weiss

ABSTRACT Toxoplasma gondii is an important pathogen in the central nervous system, causing a severe and often fatal encephalitis in patients with AIDS. Gamma interferon (IFN-γ) is the main cytokine preventing reactivation of Toxoplasma encephalitis in the brain. Microglia are important IFN-γ-activated effector cells controlling the growth of T. gondii in the brain via a nitric oxide (NO)-mediated mechanism. IFN-γ can also activate astrocytes to inhibit the growth of T. gondii. Previous studies found that the mechanism in murine astrocytes is independent of NO and all other known anti-Toxoplasma mechanisms. In this study we investigated the role of IGTP, a recently identified IFN-γ-regulated gene, in IFN-γ inhibition of T. gondii in murine astrocytes. Primary astrocytes were cultivated from IGTP-deficient mice, treated with IFN-γ, and then tested for anti-Toxoplasma activity. In wild-type astrocytesT. gondii growth was significantly inhibited by IFN-γ, whereas in astrocytes from IGTP-deficient mice IFN-γ did not cause a significant inhibition of growth. Immunoblot analysis confirmed that IFN-γ induced significant levels of IGTP in wild-type murine astrocytes within 24 h. These results indicate that IGTP plays a central role in the IFN-γ-induced inhibition of T. gondii in murine astrocytes.


2005 ◽  
Vol 86 (2) ◽  
pp. 399-403 ◽  
Author(s):  
Jürgen Hausmann ◽  
Karen Baur ◽  
Karin R. Engelhardt ◽  
Timo Fischer ◽  
Hanns-Joachim Rziha ◽  
...  

Borna disease virus (BDV) can persistently infect the central nervous system and induce CD8+ T-cell-mediated neurological disease in MRL mice. To determine whether specific immune priming would prevent disease, a prime–boost immunization protocol was established in which intramuscular injection of a recombinant parapoxvirus expressing BDV nucleoprotein (BDV-N) was followed by intraperitoneal infection with vaccinia virus expressing BDV-N. Immunized wild-type and perforin-deficient mice remained healthy after intracerebral infection with BDV and contained almost no virus in the brain at 5 weeks post-challenge. Immunization failed to induce resistance against BDV in mice lacking mature CD8+ T cells. Immunization of perforin-deficient mice with a poxvirus vector expressing mutant BDV-N lacking the known CD8+ T-cell epitope did not efficiently block multiplication of BDV in the brain and did not prevent neurological disease, indicating that vaccine-induced immunity to BDV in wild-type and perforin-deficient mice resulted from the action of CD8+ T cells.


2007 ◽  
Vol 51 (9) ◽  
pp. 3136-3146 ◽  
Author(s):  
Lisa Sanderson ◽  
Adil Khan ◽  
Sarah Thomas

ABSTRACT Although 60 million people are exposed to human African trypanosomiasis, drug companies have not been interested in developing new drugs due to the lack of financial reward. No new drugs will be available for several years. A clearer understanding of the distribution of existing drugs into the brains of sleeping sickness patients is needed if we are to use the treatments that are available more safely and effectively. This proposal addresses this issue by using established animal models. Using in situ brain perfusion and isolated incubated choroid plexus techniques, we investigated the distribution of [3H]suramin into the central nervous systems (CNSs) of male BALB/c, FVB (wild-type), and P-glycoprotein-deficient (Mdr1a/Mdr1b-targeted mutation) mice. There was no difference in the [3H]suramin distributions between the three strains of mice. [3H]suramin had a distribution similar to that of the vascular marker, [14C]sucrose, into the regions of the brain parenchyma that have a blood-brain barrier. However, the association of [3H]suramin with the circumventricular organ samples, including the choroid plexus, was higher than that of [14C]sucrose. The association of [3H]suramin with the choroid plexus was also sensitive to phenylarsine oxide, an inhibitor of endocytosis. The distribution of [3H]suramin to the brain was not affected by the presence of other antitrypanosomal drugs or the P-glycoprotein efflux transporter. Overall, the results confirm that [3H]suramin would be unlikely to treat the second or CNS stage of sleeping sickness.


Sign in / Sign up

Export Citation Format

Share Document