scholarly journals Regulation of Insulin-Stimulated Glucose Uptake in Rat White Adipose Tissue upon Chronic Central Leptin Infusion: Effects on Adiposity

Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1366-1377 ◽  
Author(s):  
Elena Bonzón-Kulichenko ◽  
Teresa Fernández-Agulló ◽  
Eduardo Moltó ◽  
Rosario Serrano ◽  
Alejandro Fernández ◽  
...  

Abstract Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [3H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.

2005 ◽  
Vol 25 (4) ◽  
pp. 1569-1575 ◽  
Author(s):  
Claire M. Steppan ◽  
Juan Wang ◽  
Eileen L. Whiteman ◽  
Morris J. Birnbaum ◽  
Mitchell A. Lazar

ABSTRACT Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is ∼20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.


2007 ◽  
Vol 21 (1) ◽  
pp. 215-228 ◽  
Author(s):  
Mark E. Cleasby ◽  
Tracie A. Reinten ◽  
Gregory J. Cooney ◽  
David E. James ◽  
Edward W. Kraegen

Abstract The phosphoinositide 3-kinase/Akt pathway is thought to be essential for normal insulin action and glucose metabolism in skeletal muscle and has been shown to be dysregulated in insulin resistance. However, the specific roles of and signaling pathways triggered by Akt isoforms have not been fully assessed in muscle in vivo. We overexpressed constitutively active (ca-) Akt-1 or Akt-2 constructs in muscle using in vivo electrotransfer and, after 1 wk, assessed the roles of each isoform on glucose metabolism and fiber growth. We achieved greater than 2.5-fold increases in total Ser473 phosphorylation in muscles expressing ca-Akt-1 and ca-Akt-2, respectively. Both isoforms caused hypertrophy of muscle fibers, consistent with increases in p70S6kinase phosphorylation, and a 60% increase in glycogen accumulation, although only Akt-1 increased glycogen synthase kinase-3β phosphorylation. Akt-2, but not Akt-1, increased basal glucose uptake (by 33%, P = 0.004) and incorporation into glycogen and lipids, suggesting a specific effect on glucose transport. Consistent with this, short hairpin RNA-mediated silencing of Akt-2 caused reductions in glycogen storage and glucose uptake. Consistent with Akt-mediated insulin receptor substrate 1 (IRS-1) degradation, we observed approximately 30% reductions in IRS-1 protein in muscle overexpressing ca-Akt-1 or ca-Akt-2. Despite this, we observed no decrease in insulin-stimulated glucose uptake. Furthermore, a 68% reduction in IRS-1 levels induced using short hairpin RNAs targeting IRS-1 also did not affect glucose disposal after a glucose load. These data indicate distinct roles for Akt-1 and Akt-2 in muscle glucose metabolism and that moderate reductions in IRS-1 expression do not result in the development of insulin resistance in skeletal muscle in vivo.


2010 ◽  
Vol 299 (3) ◽  
pp. E364-E373 ◽  
Author(s):  
Takashi Yamada ◽  
Shi-Jin Zhang ◽  
Håkan Westerblad ◽  
Abram Katz

Blood ketone body levels increase during starvation and untreated diabetes. Here we tested the hypothesis that ketone bodies directly inhibit insulin action in skeletal muscle. We investigated the effect of d,l-β-hydroxybutyrate (BOH; the major ketone body in vivo) on insulin-mediated glucose uptake (2-deoxyglucose) in isolated mouse soleus (oxidative) and extensor digitorum longus (EDL; glycolytic) muscle. BOH inhibited insulin-mediated glucose uptake in soleus (but not in EDL) muscle in a time- and concentration-dependent manner. Following 19.5 h of exposure to 5 mM BOH, insulin-mediated (20 mU/ml) glucose uptake was inhibited by ∼90% (substantial inhibition was also observed in 3- O-methylglucose transport). The inhibitory effect of BOH was reproduced with d- but not l-BOH. BOH did not significantly affect hypoxia- or AICAR-mediated (activates AMP-dependent protein kinase) glucose uptake. The BOH effect did not require the presence/utilization of glucose since it was also seen when glucose in the medium was substituted with pyruvate. To determine whether the BOH effect was mediated by oxidative stress, an exogenous antioxidant (1 mM tempol) was used; however, tempol did not reverse the BOH effect on insulin action. BOH did not alter the levels of total tissue GLUT4 protein or insulin-mediated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 but blocked insulin-mediated phosphorylation of protein kinase B by ∼50%. These data demonstrate that BOH inhibits insulin-mediated glucose transport in oxidative muscle by inhibiting insulin signaling. Thus ketone bodies may be potent diabetogenic agents in vivo.


2015 ◽  
Vol 768 ◽  
pp. 207-216 ◽  
Author(s):  
Deepti Arha ◽  
Sukanya Pandeti ◽  
Akansha Mishra ◽  
Swayam Prakash Srivastava ◽  
Arvind Kumar Srivastava ◽  
...  

2004 ◽  
Vol 378 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Michael W. GREENE ◽  
Nick MORRICE ◽  
Robert S. GAROFALO ◽  
Richard A. ROTH

Non-esterified fatty acid (free fatty acid)-induced activation of the novel PKC (protein kinase C) isoenzymes PKCδ and PKCθ correlates with insulin resistance, including decreased insulin-stimulated IRS-1 (insulin receptor substrate-1) tyrosine phosphorylation and phosphoinositide 3-kinase activation, although the mechanism(s) for this resistance is not known. In the present study, we have explored the possibility of a novel PKC, PKCδ, to modulate directly the ability of the insulin receptor kinase to tyrosine-phosphorylate IRS-1. We have found that expression of either constitutively active PKCδ or wild-type PKCδ followed by phorbol ester activation both inhibit insulin-stimulated IRS-1 tyrosine phosphorylation in vivo. Activated PKCδ was also found to inhibit the IRS-1 tyrosine phosphorylation in vitro by purified insulin receptor using recombinant full-length human IRS-1 and a partial IRS-1–glutathione S-transferase-fusion protein as substrates. This inhibition in vitro was not observed with a non-IRS-1 substrate, indicating that it was not the result of a general decrease in the intrinsic kinase activity of the receptor. Consistent with the hypothesis that PKCδ acts directly on IRS-1, we show that IRS-1 can be phosphorylated by PKCδ on at least 18 sites. The importance of three of the PKCδ phosphorylation sites in IRS-1 was shown in vitro by a 75–80% decrease in the incorporation of phosphate into an IRS-1 triple mutant in which Ser-307, Ser-323 and Ser-574 were replaced by Ala. More importantly, the mutation of these three sites completely abrogated the inhibitory effect of PKCδ on IRS-1 tyrosine phosphorylation in vitro. These results indicate that PKCδ modulates the ability of the insulin receptor to tyrosine-phosphorylate IRS-1 by direct phosphorylation of the IRS-1 molecule.


2004 ◽  
Vol 24 (12) ◽  
pp. 5434-5446 ◽  
Author(s):  
Kohjiro Ueki ◽  
Tatsuya Kondo ◽  
C. Ronald Kahn

ABSTRACT Insulin resistance is a pathophysiological component of type 2 diabetes and obesity and also occurs in states of stress, infection, and inflammation associated with an upregulation of cytokines. Here we show that in both obesity and lipopolysaccharide (LPS)-induced endotoxemia there is an increase in suppressor of cytokine signaling (SOCS) proteins, SOCS-1 and SOCS-3, in liver, muscle, and, to a lesser extent, fat. In concordance with these increases by LPS, tyrosine phosphorylation of the insulin receptor (IR) is partially impaired and phosphorylation of the insulin receptor substrate (IRS) proteins is almost completely suppressed. Direct overexpression of SOCS-3 in liver by adenoviral-mediated gene transfer markedly decreases tyrosine phosphorylation of both IRS-1 and IRS-2, while SOCS-1 overexpression preferentially inhibits IRS-2 phosphorylation. Neither affects IR phosphorylation, although both SOCS-1 and SOCS-3 bind to the insulin receptor in vivo in an insulin-dependent fashion. Experiments with cultured cells expressing mutant insulin receptors reveal that SOCS-3 binds to Tyr960 of IR, a key residue for the recognition of IRS-1 and IRS-2, whereas SOCS-1 binds to the domain in the catalytic loop essential for IRS-2 recognition in vitro. Moreover, overexpression of either SOCS-1 or SOCS-3 attenuates insulin-induced glycogen synthesis in L6 myotubes and activation of glucose uptake in 3T3L1 adipocytes. By contrast, a reduction of SOCS-1 or SOCS-3 by antisense treatment partially restores tumor necrosis factor alpha-induced downregulation of tyrosine phosphorylation of IRS proteins in 3T3L1 adipocytes. These data indicate that SOCS-1 and SOCS-3 act as negative regulators in insulin signaling and serve as one of the missing links between insulin resistance and cytokine signaling.


Endocrinology ◽  
2007 ◽  
Vol 148 (6) ◽  
pp. 2994-3003 ◽  
Author(s):  
Ken Ishizuka ◽  
Isao Usui ◽  
Yukiko Kanatani ◽  
Agussalim Bukhari ◽  
Jianying He ◽  
...  

Serine phosphorylation of insulin receptor substrate (IRS)-1 and the induction of suppressor of cytokine signaling 3 (SOCS3) is recently well documented as the mechanisms for the insulin resistance. However, the relationship between these two mechanisms is not fully understood. In this study, we investigated the involvement of SOCS3 and IRS-1 serine phosphorylation in TNFα-induced insulin resistance in 3T3-L1 adipocytes. TNFα transiently stimulated serine phosphorylation of IRS-1 from 10 min to 1 h, whereas insulin-stimulated IRS-1 tyrosine phosphorylation was inhibited only after TNFα treatment longer than 4 h. These results suggest that serine phosphorylation of IRS-1 alone is not the major mechanism for the inhibited insulin signaling by TNFα. TNFα stimulation longer than 4 h enhanced the expression of SOCS3 and signal transducer and activator of transcription-3 phosphorylation, concomitantly with the production of IL-6. Anti-IL-6 neutralizing antibody ameliorated suppressed insulin signaling by 24 h TNFα treatment, when it partially decreased SOCS3 induction and signal transducer and activator of transcription-3 phosphorylation. These results suggest that SOCS3 induction is involved in inhibited insulin signaling by TNFα. However, low-level expression of SOCS3 by IL-6 or adenovirus vector did not affect insulin-stimulated IRS-1 tyrosine phosphorylation. Interestingly, when IRS-1 serine phosphorylation was enhanced by TNFα or anisomycin in the presence of low-level SOCS3, IRS-1 degradation was remarkably enhanced. Taken together, both IRS-1 serine phosphorylation and SOCS3 induction are necessary, but one of the pair is not sufficient for the inhibited insulin signaling. Chronic TNFα may inhibit insulin signaling effectively because it causes both IRS-1 serine phosphorylation and the following SOCS3 induction in 3T3-L1 adipocytes.


Sign in / Sign up

Export Citation Format

Share Document